下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Andrew Dent:為了減少浪費,我們需要重新思考節儉的意義」- To Eliminate Waste, We Need to Rediscover Thrift

觀看次數:3897  • 

框選或點兩下字幕可以直接查字典喔!

Let's talk about thrift. Thrift is a concept where you reduce, reuse and recycle, but yet with an economic aspect I think has a real potential for change. My grandmother, she knew about thrift. This is her string jar. She never bought any string. Basically, she would collect string. It would come from the butcher's, it would come from presents. She would put it in the jar and then use it when it was needed. When it was finished, whether it was tying up the roses or a part of my bike, once finished with that, it'd go back into the jar. This is a perfect idea of thrift; you use what you need, you don't actually purchase anything, so you save money.

Kids also inherently know this idea. When you want to throw out a cardboard box, the average kid will say, "Don't! I want to use it for a robot head or for a canoe to paddle down a river." They understand the value of the second life of products. So, I think thrift is a perfect counterpoint to the current age which we live in. All of our current products are replaceable. When we get that bright, new, shiny toy, it's because, basically, we got rid of the old one. The idea of that is, of course, it's great in the moment, but the challenge is, as we keep doing this, we're going to cause a problem.

That problem is that there is really no way. When you throw something away, it typically goes into a landfill. Now, a landfill is basically something which is not going to go away, and it's increasing. At the moment, we have about 1.3 billion tons of material every year going into landfills. By 2100, it's going to be about four billion tons. See, instead, I'd prefer if we started thrifting. What that means is, we consider materials when they go into products and also when they get used, and, at the end of their life: When can they be used again? It's the idea of completely changing the way we think about waste, so waste is no longer a dirty word—we almost remove the word "waste" completely. All we're looking to is resources. Resource goes into a product and then can basically go into another product. We used to be good at thrifting. My grandmother, again, used to use old seed packets to paper the bathroom walls.

I think, though, there are companies out there who understand this value and are promoting it. And a lot of the technologies that have been developed for the smart age can also be adapted to reduce, reuse and also thrift more proficiently. And as a materials scientist, what I've been tracking over the last couple of decades is how companies are getting smart at thrifting, how they're able to understand this concept and profit from it. I'm going to give you two examples. The first one, a good one; the second one, not so good.

The first is the automotive industry. Not always known as the most innovative or creative of industries, but it turns out, they're really, really good at recycling their products. Ninety-five percent of every single car that goes on the road gets recycled here. And of that car, about 75 percent of the entire car actually gets used again. That includes, of course, the old steel and aluminum but then also the plastics from the fender and the interiors, glass from the windows and the windshield and also the tires. There's a mature and successful industry that deals with these old cars and basically recycles them and puts them back into use as new cars or other new products. Even as we move towards battery-powered cars, there are companies that claim they can recycle up to 90 percent of the 11 million tons of batteries that are going to be with us in 2020. That, I think, is not perfect, but it's certainly good, and it's getting better.

The industry that's not doing so well is the architecture industry. One of the challenges with architecture has always been when we build up, we don't think about taking down. We don't dismantle, we don't disassemble, we demolish. That's a challenge, because it ends up that about a third of all landfill waste in the US is architecture. We need to think differently about this. There are programs that can actually reduce some of this material.

A good example is this. These are actually bricks that are made from old demolition waste, which includes the glass, the rubble, the concrete. You put up a grinder, put it all together, heat it up and make these bricks we can basically build more buildings from. But it's only a fraction of what we need.

My hope is that with big data and geotagging, we can actually change that, and we can be more thrifty when it comes to buildings. If there's a building down the block which is being demolished, are there materials there that the new building being built here can use? Can we use that, the ability to understand that all the materials available in that building are still usable? Can we then basically put them into a new building, without actually losing any value in the process?

So now let's think about other industries. What are other industries doing to create thrift? Well, it turns out that there are plenty of industries that are also thinking about their own waste and what we can do with it. A simple example is the waste that they basically belch out as part of industrial processes. Most metal smelters give off an awful lot of carbon dioxide. Turns out, there's a company called Land Detector that's actually working in China and also soon in South Africa, that's able to take that waste gas—about 700,000 tons per smelter—and then turn it into about 400,000 tons of ethanol, which is equivalent to basically powering 250,000, or quarter of a million, cars for a year. That's a very effective use of waste.

How about products more close to home? This is a simple solution. And it, again, takes the idea of reducing, reusing, but then also with economic advantage. So it's a simple process of changing from a cut and sew, where typically between 20 and 30 materials are used which are cut from a large cloth and then sewn together or even sometimes glued, they changed it and said that they just knitted the shoe. The advantage with this is not just a simplification of the process, it's also, "I've got one material. I have zero waste," and then also, "I'm able to potentially recycle that at the end of its life."

Digital manufacturing is also allowing us to do this more effectively. In this case, it's actually creating the theoretical limit of strength for a material: you cannot get any stronger for the amount of material than this shape. So it's a basic simple block, but the idea is, I can extrapolate this, I can make it into large formats, I can make it into buildings, bridges, but also airplane wings and shoes. The idea here is, I'm minimizing the amount of material.

Here's a good example from architecture. Typically, these sorts of metal nodes are used to hold up large tent structures. In this case, it in was in the Hague, along a shopping center. They used 1600 of the materials on the left. The difference is, by using the solution on the right, they cut down the number of steps from seven to one, because the one on the left is currently welded, the one on the right is simply just printed. And it was able to reduce waste to zero, cost less money and also, because it's made out of steel, can be eventually recycled at the end of its life.

Nature also is very effective at thrift. Think about it: nature has zero waste. Everything is useful for another process. So, in this case, nanocellulose, which is basically one of the very fine building blocks of cellulose, which is one of the materials that makes trees strong, you can isolate it, and it works very much like carbon fiber. So, take that from a tree, form it into fibers, and then those fibers can strengthen things, such as airplanes, buildings, cars. The advantage of this, though, is it's not just bioderived, comes from a renewable resource, but also that it is transparent, so it can be used in consumer electronics, as well as food packaging. Not bad for something that basically comes from the backyard.

Another one from the biosource is synthetic spider silk. Now, it's very hard to actually create spider silk naturally. You can basically get it from spiders, but in large numbers, they tend to kill each other, eat each other, so you've got a problem with creating it, in the same way you do with regular silk. So what you can do is instead take the DNA from the spider, and put it into various different things. You can put it into bacteria, you can put it into yeast, you can put it into milk. And what you can do then is, the milk or the bacteria produce in much larger volumes and then from that, spin a yarn and then create a fabric or a rope. Again, bioderived, has incredible strength—about the same as Kevlar—so they're using it in things like bulletproof vests and helmets and outdoor jackets. It has a great performance. But again, it's bioderived, and at the end of its life, it potentially can go back into the soil and get composted to again be potentially used as a new material.

I'd like to leave you with one last form which is biobased, but this, I think, is like the ultimate thrift. Think about the poster child for conspicuous consumption. It's the water bottle. We have too many of them, they're basically going everywhere, they're a problem in the ocean. What do we do with them? This process is able not just to recycle them, but to recycle them infinitely. Why is that interesting? Because when we think about reusing and recycling, metals, glass, things like that, can be recycled as many times as you like. There's metal in your car that may well have come from a 1950s Oldsmobile, because you can recycle it infinitely with no loss of performance. Plastics offer about once or twice of recycling, whether it's a bottle, whether it's a chair—whatever it is, if it's carpet—after two times of recycling, whether it goes back into another chair, etc, it tends to lose strength, it's no longer of any use. This, though, just using a few enzymes, is able to recycle it infinitely. I take a bottle or a chair or some other plastic product, I basically put it in with a few enzymes, they break it apart, they basically put it back into its original molecules. And then from those molecules, you can build another chair or carpet or bottle. So, the cycle is infinite. The advantage with that, of course, is that you have potentially zero loss of material resources. Again, the perfect idea of thrift.

So in conclusion, I just want to have you think about—if you make anything, if you're any part of a design firm, if you basically are refurbishing your house—any aspect where you make something, think about how that product could potentially be used as a second life, or third life or fourth life. Design in the ability for it to be taken apart. That, to me, is the ultimate thrift, and I think that's basically what my grandmother would love.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!