下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「James Watson:我們是如何發現 DNA 的」- How We Discovered DNA

觀看次數:3228  • 

框選或點兩下字幕可以直接查字典喔!

Well, I thought there would be a podium, so I'm a bit scared. Chris asked me to tell again how we found the structure of DNA. And since, you know, I follow his orders, I'll do it. But it slightly bores me. And, you know, I wrote a book. So I'll say something. I'll say a little about, you know, how the discovery was made, and why Francis and I found it. And then, I hope maybe I have at least five minutes to say what makes me tick now.

In back of me is a picture of me when I was 17. I was at the University of Chicago, in my third year, and I was in my third year because the University of Chicago let you in after two years of high school. So you—it was fun to get away from high school, and because I was very small, and I was no good in sports, or anything like that.

But I should say that my background—my father was, you know, raised to be an Episcopalian and Republican, but after one year of college, he became an atheist and a Democrat. And my mother was Irish Catholic, and—but she didn't take religion too seriously. And by the age of 11, I was no longer going to Sunday Mass, and going on bird watching walks with my father. So early on, I heard of Charles Darwin. I guess, you know, he was the big hero. And, you know, you understand life as it now exists through evolution.

And at the University of Chicago I was a zoology major, and thought I would end up, you know, if I was bright enough, maybe getting a Ph.D. from Cornell in ornithology. Then, in the Chicago paper, there was a review of a book called "What is Life?" by the great physicist, Schrodinger. And that, of course, had been a question I wanted to know. You know, Darwin explained life after it got started, but what was the essence of life?

And Schrodinger said the essence was information present in our chromosomes, and it had to be present on a molecule. I'd never really thought of molecules before. You know chromosomes, but this was a molecule, and somehow all the information was probably present in some digital form. And there was the big question of, how did you copy the information?

So that was the book. And so, from that moment on, I wanted to be a geneticist—understand the gene and, through that, understand life. So I had, you know, a hero at a distance. It wasn't a baseball player; it was Linus Pauling. And so I applied to Caltech and they turned me down. So I went to Indiana, which was actually as good as Caltech in genetics, and besides, they had a really good basketball team. So I had a really quite happy life at Indiana. And it was at Indiana I got the impression that, you know, the gene was likely to be DNA. And so when I got my Ph.D., I should go and search for DNA.

So I first went to Copenhagen because I thought, well, maybe I could become a biochemist, but I discovered biochemistry was very boring. It wasn't going anywhere toward, you know, saying what the gene was; it was just nuclear science. And oh, that's the book, little book. You can read it in about two hours. And—but then I went to a meeting in Italy. And there was an unexpected speaker who wasn't on the program, and he talked about DNA. And this was Maurice Wilkins. He was trained as a physicist, and after the war he wanted to do biophysics, and he picked DNA because DNA had been determined at the Rockefeller Institute to possibly be the genetic molecules on the chromosomes. Most people believed it was proteins. But Wilkins, you know, thought DNA was the best bet, and he showed this x-ray photograph. Sort of crystalline. So DNA had a structure, even though it owed it to probably different molecules carrying different sets of instructions. So there was something universal about the DNA molecule. So I wanted to work with him, but he didn't want a former birdwatcher, and I ended up in Cambridge, England.

So I went to Cambridge, because it was really the best place in the world then for x-ray crystallography. And x-ray crystallography is now a subject in, you know, chemistry departments. I mean, in those days it was the domain of the physicists. So the best place for x-ray crystallography was at the Cavendish Laboratory at Cambridge. And there I met Francis Crick. I went there without knowing him. He was 35. I was 23. And within a day, we had decided that maybe we could take a shortcut to finding the structure of DNA. Not solve it like, you know, in rigorous fashion, but build a model, an electro-model, using some coordinates of, you know, length, all that sort of stuff from x-ray photographs. But just ask what the molecule—how should it fold up?

And the reason for doing so, at the center of this photograph, is Linus Pauling. About six months before, he proposed the alpha helical structure for proteins. And in doing so, he banished the man out on the right, Sir Lawrence Bragg, who was the Cavendish professor. This is a photograph several years later, when Bragg had cause to smile. He certainly wasn't smiling when I got there, because he was somewhat humiliated by Pauling getting the alpha helix, and the Cambridge people failing because they weren't chemists. And certainly, neither Crick or I were chemists, so we tried to build a model. And he knew, Francis knew Wilkins. So Wilkins said he thought it was the helix. X-ray diagram, he thought was comparable with the helix. So we built a three-stranded model. The people from London came up. Wilkins and this collaborator, or possible collaborator, Rosalind Franklin, came up and sort of laughed at our model. They said it was lousy, and it was. So we were told to build no more models; we were incompetent. And so we didn't build any models, and Francis sort of continued to work on proteins. And basically, I did nothing. And—except read. You know, basically, reading is a good thing; you get facts. And we kept telling the people in London that Linus Pauling's going to move on to DNA. If DNA is that important, Linus will know it. He'll build a model, and then we're going to be scooped.

And, in fact, he'd written the people in London: Could he see their x-ray photograph? And they had the wisdom to say "no." So he didn't have it. But there was ones in the literature. Actually, Linus didn't look at them that carefully. But about, oh, 15 months after I got to Cambridge, a rumor began to appear from Linus Pauling's son, who was in Cambridge, that his father was now working on DNA. And so, one day Peter came in and he said he was Peter Pauling, and he gave me a copy of his father's manuscripts. And boy, I was scared because I thought, you know, we may be scooped. I have nothing to do, no qualifications for anything.

And so there was the paper, and he proposed a three-stranded structure. And I read it, and it was just—it was crap. So this was, you know, unexpected from the world and so, it was held together by hydrogen bonds between phosphate groups. Well, if the peak pH that cells have is around seven, those hydrogen bonds couldn't exist. We rushed over to the chemistry department and said, "Could Pauling be right?" And Alex Hust said, "No." So we were happy.

And, you know, we were still in the game, but we were frightened that somebody at Caltech would tell Linus that he was wrong. And so Bragg said, "Build models." And a month after we got the Pauling manuscript—I should say I took the manuscript to London, and showed the people. Well, I said, Linus was wrong and that we're still in the game and that they should immediately start building models. But Wilkins said "no." Rosalind Franklin was leaving in about two months, and after she left he would start building models. And so I came back with that news to Cambridge, and Bragg said, "Build models." Well, of course, I wanted to build models. And there's a picture of Rosalind. She really, you know, in one sense she was a chemist, but really she would have been trained—she didn't know any organic chemistry or quantum chemistry. She was a crystallographer.

And I think part of the reason she didn't want to build models was, she wasn't a chemist, whereas Pauling was a chemist. And so Crick and I, you know, started building models, and I'd learned a little chemistry, but not enough. Well, we got the answer on the 28th February '53. And it was because of a rule, which, to me, is a very good rule: Never be the brightest person in a room, and we weren't. We weren't the best chemists in the room. I went in and showed them a pairing I'd done, Jerry Donohue—he was a chemist—he said, it's wrong. You've got—the hydrogen atoms are in the wrong place. I just put them down like they were in the books. He said they were wrong.

So the next day, you know, after I thought, "Well, he might be right." So I changed the locations, and then we found the base pairing, and Francis immediately said the chains run in absolute directions. And we knew we were right. So it was a pretty, you know, it all happened in about two hours. You know, from nothing to thing. And we knew it was big because, you know, if you just put A next to T and G next to C, you have a copying mechanism. So we saw how genetic information is carried. It's the order of the four bases. So in a sense, it is a sort of digital-type information. And you copy it by going from strand-separating. So, you know, if it didn't work this way, you might as well believe it, because you didn't have any other scheme.

But that's not the way most scientists think. Most scientists are really rather dull. They said, we won't think about it until we know it's right. But, you know, we thought, well, it's at least 95 percent right or 99 percent right. So think about it. The next five years, there were essentially something like five references to our work in "Nature"—none. And so we were left by ourselves, and trying to do the last part of the trio: how do you—what does this genetic information do? And it was pretty obvious that it provided the information to an RNA molecule, and then how do you go from RNA to protein? For about three years we just—I tried to solve the structure of RNA. It didn't yield. It didn't give good x-ray photographs. I was decidedly unhappy; a girl didn't marry me. It was really, you know, sort of a shitty time.

So there's a picture of Francis and I before I met the girl, so I'm still looking happy.
But there is what we did when we didn't know where to go forward: we formed a club and called it the RNA Tie Club. George Gamow, also a great physicist, he designed the tie. He was one of the members. And the question was: How do you go from a four-letter code to the 20-letter code of proteins? Feynman was a member, and Teller, and friends of Gamow. But that's the only—no, we were only photographed twice. And on both occasions, you know, one of us was missing the tie. There's Francis up on the upper right, and Alex Rich—the M.D.-turned-crystallographer—is next to me. This was taken in Cambridge in September of 1955. And I'm smiling, sort of forced, I think, because the girl I had, boy, she was gone.

And so I didn't really get happy until 1960, because then we found out, basically, you know, that there are three forms of RNA. And we knew, basically, DNA provides the information for RNA. RNA provides the information for protein. And that let Marshall Nirenberg, you know, take RNA—synthetic RNA—put it in a system making protein. He made polyphenylalanine, polyphenylalanine. So that's the first cracking of the genetic code, and it was all over by 1966. So there, that's what Chris wanted me to do, it was—so what happened since then? Well, at that time—I should go back. When we found the structure of DNA, I gave my first talk at Cold Spring Harbor. The physicist, Leo Szilard, he looked at me and said, "Are you going to patent this?" And—but he knew patent law, and that we couldn't patent it, because you couldn't. No use for it.

And so DNA didn't become a useful molecule, and the lawyers didn't enter into the equation until 1973, 20 years later, when Boyer and Cohen in San Francisco and Stanford came up with their method of recombinant DNA, and Stanford patented it and made a lot of money. At least they patented something which, you know, could do useful things. And then, they learned how to read the letters for the code. And, boom, we've, you know, had a biotech industry. And, but we were still a long ways from, you know, answering a question which sort of dominated my childhood, which is: How do you nature-nurture?

And so I'll go on. I'm already out of time, but this is Michael Wigler, a very, very clever mathematician turned physicist. And he developed a technique which essentially will let us look at sample DNA and, eventually, a million spots along it. There's a chip there, a conventional one. Then there's one made by a photolithography by a company in Madison called NimbleGen, which is way ahead of Affymetrix. And we use their technique. And what you can do is sort of compare DNA of normal segs versus cancer. And you can see on the top that cancers which are bad show insertions or deletions. So the DNA is really badly mucked up, whereas if you have a chance of surviving, the DNA isn't so mucked up. So we think that this will eventually lead to what we call "DNA biopsies." Before you get treated for cancer, you should really look at this technique, and get a feeling of the face of the enemy. It's not a—it's only a partial look, but it's a—I think it's going to be very, very useful.

So, we started with breast cancer because there's lots of money for it, no government money. And now I have a sort of vested interest: I want to do it for prostate cancer. So, you know, you aren't treated if it's not dangerous. And so, but Wigler, besides looking at cancer cells, looked at normal cells, and made a really sort of surprising observation. Which is, all of us have about 10 places in our genome where we've lost a gene or gained another one. So we're sort of all imperfect. And the question is well, if we're around here, you know, these little losses or gains might not be too bad. But if these deletions or amplifications occurred in the wrong gene, maybe we'll feel sick.

So the first disease he looked at is autism. And the reason we looked at autism is we had the money to do it. Looking at an individual is about 3,000 dollars. And the parent of a child with Asperger's disease, the high-intelligence autism, had sent his thing to a conventional company; they didn't do it. Couldn't do it by conventional genetics, but just scanning it we began to find genes for autism. And you can see here, there are a lot of them. So a lot of autistic kids are autistic because they just lost a big piece of DNA. I mean, big piece at the molecular level. We saw one autistic kid, about five million bases just missing from one of his chromosomes. We haven't yet looked at the parents, but the parents probably don't have that loss, or they wouldn't be parents. Now, so, our autism study is just beginning. We got three million dollars. I think it will cost at least 10 to 20 before you'd be in a position to help parents who've had an autistic child, or think they may have an autistic child, and can we spot the difference? So this same technique should probably look at all. It's a wonderful way to find genes.

And so, I'll conclude by saying we've looked at 20 people with schizophrenia. And we thought we'd probably have to look at several hundred before we got the picture. But as you can see, there's seven out of 20 had a change which was very high. And yet, in the controls there were three. So what's the meaning of the controls? Were they crazy also, and we didn't know it? Or, you know, were they normal? I would guess they're normal. And what we think in schizophrenia is there are genes of predisposure, and whether this is one that predisposes—and then there's only a sub-segment of the population that's capable of being schizophrenic.
Now, we don't have really any evidence of it, but I think, to give you a hypothesis, the best guess is that if you're left-handed, you're prone to schizophrenia. 30 percent of schizophrenic people are left-handed, and schizophrenia has a very funny genetics, which means 60 percent of the people are genetically left-handed, but only half of it showed. I don't have the time to say. Now, some people who think they're right-handed are genetically left-handed. OK. I'm just saying that, if you think, oh, I don't carry a left-handed gene so therefore my, you know, children won't be at risk of schizophrenia. You might.

So it's, to me, an extraordinarily exciting time. We ought to be able to find the gene for bipolar; there's a relationship. And if I had enough money, we'd find them all this year. Well, thank you. Bye.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!