下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Julian Burschka:你的口氣與你的健康息息相關」- What Your Breath Could Reveal about Your Health

觀看次數:1766  • 

框選或點兩下字幕可以直接查字典喔!

I have a tendency to assume the worst, and once in a while, this habit plays tricks on me. For example, if I feel unexpected pain in my body that I have not experienced before and that I cannot attribute, then all of a sudden, my mind might turn a tense back into heart disease or calf muscle pain into deep vein thrombosis. But so far, I haven't been diagnosed with any deadly or incurable disease. Sometimes things just hurt for no clear reason.

But not everyone is as lucky as me. Every year, more than 50 million people die worldwide. Especially in high-income economies like ours, a large fraction of deaths is caused by slowly progressing diseases: heart disease, chronic lung disease, cancer, Alzheimer's, diabetes, just to name a few.

Now, humanity has made tremendous progress in diagnosing and treating many of these. But we are at a stage where further advancement in health cannot be achieved only by developing new treatments. And this becomes evident when we look at one aspect that many of these diseases have in common: the probability for successful treatment strongly depends on when treatment is started. But a disease is typically only detected once symptoms occur. The problem here is that, in fact, many diseases can remain asymptomatic, hence undetected, for a long period of time. Because of this, there is a persisting need for new ways of detecting disease at early stage, way before any symptoms occur. In health care, this is called screening. And as defined by the World Health Organization, screening is "the presumptive identification of unrecognized disease in an apparently healthy person, by means of tests...that can be applied rapidly and easily..." That's a long definition, so let me repeat it: identification of unrecognized disease in an apparently healthy person by means of tests that can be applied both rapidly and easily. And I want to put special emphasis on the words "rapidly" and "easily" because many of the existing screening methods are exactly the opposite. And those of you who have undergone colonoscopy as part of a screening program for colorectal cancer will know what I mean.

Obviously, there's a variety of medical tools available to perform screening tests. This ranges from imaging techniques such as radiography or magnetic resonance imaging to the analysis of blood or tissue. We have all had such tests. But there's one medium that for long has been overlooked: a medium that is easily accessible, basically nondepletable, and it holds tremendous promise for medical analysis. And that is our breath.

Human breath is essentially composed of five components: nitrogen, oxygen, carbon dioxide, water and argon. But besides these five, there are hundreds of other components that are present in very low quantity. These are called volatile organic compounds, and we release hundreds, even thousands of them every time we exhale. The analysis of these volatile organic compounds in our breath is called breath analysis. In fact, I believe that many of you have already experienced breath analysis. Imagine: you're driving home late at night, when suddenly, there's a friendly police officer who asks you kindly but firmly to pull over and blow into a device like this one. This is an alcohol breath tester that is used to measure the ethanol concentration in your breath and determine whether driving in your condition is a clever idea. Now, I'd say my driving was pretty good, but let me check.

0.0, so nothing to worry about, all fine.

Now imagine a device like this one, that does not only measure alcohol levels in your breath, but that detects diseases like the ones I've shown you and potentially many more. The concept of correlating the smell of a person's breath with certain medical conditions, in fact, dates back to Ancient Greece. But only recently, research efforts on breath analysis have skyrocketed, and what once was a dream is now becoming reality. And let me pull up this list again that I showed you earlier. For the majority of diseases listed here, there's substantial scientific evidence suggesting that the disease could be detected by breath analysis.

But how does it work, exactly? The essential part is a sensor device that detects the volatile organic compounds in our breath. Simply put: when exposed to a breath sample, the sensor outputs a complex signature that results from the mixture of volatile organic compounds that we exhale. Now, this signature represents a fingerprint of your metabolism, your microbiome and the biochemical processes that occur in your body. If you have a disease, your organism will change, and so will the composition of your exhaled breath. And then the only thing that is left to do is to correlate a certain signature with the presence or absence of certain medical conditions.

The technology promises several undeniable benefits. Firstly, the sensor can be miniaturized and integrated into small, handheld devices like this alcohol breath tester. This would allow the test to be used in many different settings and even at home, so that a visit at the doctor's office is not needed each time a test shall be performed.

Secondly, breath analysis is noninvasive and can be as simple as blowing into an alcohol breath tester. Such simplicity and ease of use would reduce patient burden and provide an incentive for broad adoption of the technology.

And thirdly, the technology is so flexible that the same device could be used to detect a broad range of medical conditions. Breath analysis could be used to screen for multiple diseases at the same time. Nowadays, each disease typically requires a different medical tool to perform a screening test. But this means you can only find what you're looking for.

With all of these features, breath analysis is predestined to deliver what many traditional screening tests are lacking. And most importantly, all of these features should eventually provide us with a platform for medical analysis that can operate at attractively low cost per test. On the contrary, existing medical tools often lead to rather high cost per test. Then, in order to keep costs down, the number of tests needs to be restricted, and this means (a) that the tests can only be performed on a narrow part of the population, for example, the high-risk population; and (b) that the number of tests per person needs to be kept at a minimum. But wouldn't it actually be beneficial if the test was performed on a larger group of people, and more often and over a longer period of time for each individual? Especially the latter would give access to something very valuable that is called longitudinal data.

Longitudinal data is a data set that tracks the same patient over the course of many months or years. Nowadays, medical decisions are often based on a limited data set, where only a glimpse of a patient's medical history is available for decision-making. In such a case, abnormalities are typically detected by comparing a patient's health profile to the average health profile of a reference population. Longitudinal data would open up a new dimension and allow abnormalities to be detected based on a patient's own medical history. This will pave the way for personalized treatment.

Sounds pretty great, right? Now you will certainly have a question that is something like, "If the technology is as great as he says, then why aren't we using it today?" And the only answer I can give you is: not everything is as easy as it sounds. There are technical challenges, for example. There's the need for extremely reliable sensors that can detect mixtures of volatile organic compounds with sufficient reproducibility. And another technical challenge is this: How do you sample a person's breath in a very defined manner so that the sampling process itself does not alter the result of the analysis? And there's the need for data. Breath analysis needs to be validated in clinical trials, and enough data needs to be collected so that individual conditions can be measured against baselines. Breath analysis can only succeed if a large enough data set can be generated and made available for broad use.

If breath analysis holds up to its promises, this is a technology that could truly aid us to transform our health care system—transform it from a reactive system where treatment is triggered by symptoms of disease to a proactive system, where disease detection, diagnosis and treatment can happen at early stage, way before any symptoms occur.

Now this brings me to my last point, and it's a fundamental one. What exactly is a disease? Imagine that breath analysis can be commercialized as I describe it, and early detection becomes routine. A problem that remains is, in fact, a problem that any screening activity has to face because, for many diseases, it is often impossible to predict with sufficient certainty whether the disease would ever cause any symptoms or put a person's life at risk. This is called overdiagnosis, and it leads to a dilemma. If a disease is identified, you could decide not to treat it because there's a certain probability that you would never suffer from it. But how much would you suffer just from knowing that you have a potentially deadly disease? And wouldn't you actually regret that the disease was detected in the first place?

Your second option is to undergo early treatment with the hope for curing it. But often, this would not come without side effects.

To be precise: the bigger problem is not overdiagnosis, it's overtreatment, because not every disease has to be treated immediately just because a treatment is available. The increasing adoption of routine screening will raise the question: What do we call a disease that can rationalize treatment, and what is just an abnormality that should not be a source of concern? My hopes are that routine screening using breath analysis can provide enough data and insight so that at some point, we'll be able to break this dilemma and predict with sufficient certainty whether and when to treat at early stage.

Our breath and the mixture of volatile organic compounds that we exhale hold tremendous amounts of information on our physiological condition. With what we know today, we have only scratched the surface. As we collect more and more data and breath profiles across the population, including all varieties of gender, age, origin and lifestyle, the power of breath analysis should increase. And eventually, breath analysis should provide us with a powerful tool not only to proactively detect specific diseases but to predict and ultimately prevent them. And this should be enough motivation to embrace the opportunities and challenges that breath analysis can provide, even for people that are not part-time hypochondriacs like me.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!