下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「David Eagleman:我們能否創造人類新感官?」- Can We Create New Senses for Humans?

觀看次數:3544  • 

框選或點兩下字幕可以直接查字典喔!

We are built out of very small stuff, and we are embedded in a very large cosmos, and the fact is that we are not very good at understanding reality at either of those scales, and that's because our brains haven't evolved to understand the world at that scale.

Instead, we're trapped on this very thin slice of perception right in the middle. But it gets strange, because even at that slice of reality that we call home, we're not seeing most of the action that's going on. So take the colors of our world. This is light waves, electromagnetic radiation that bounces off objects and it hits specialized receptors in the back of our eyes. But we're not seeing all the waves out there. In fact, what we see is less than a 10 trillionth of what's out there. So you have radio waves and microwaves and X-rays and gamma rays passing through your body right now and you're completely unaware of it, because you don't come with the proper biological receptors for picking it up. There are thousands of cell phone conversations passing through you right now, and you're utterly blind to it.

Now, it's not that these things are inherently unseeable. Snakes include some infrared in their reality, and honeybees include ultraviolet in their view of the world, and of course we build machines in the dashboards of our cars to pick up on signals in the radio frequency range, and we built machines in hospitals to pick up on the X-ray range. But you can't sense any of those by yourself, at least not yet, because you don't come equipped with the proper sensors.

Now, what this means is that our experience of reality is constrained by our biology, and that goes against the common sense notion that our eyes and our ears and our fingertips are just picking up the objective reality that's out there. Instead, our brains are sampling just a little bit of the world.

Now, across the animal kingdom, different animals pick up on different parts of reality. So in the blind and deaf world of the tick, the important signals are temperature and butyric acid; in the world of the black ghost knifefish, its sensory world is lavishly colored by electrical fields; and for the echolocating bat, its reality is constructed out of air compression waves. That's the slice of their ecosystem that they can pick up on. And we have a word for this in science. It's called the umwelt, which is the German word for the surrounding world. Now, presumably, every animal assumes that its umwelt is the entire objective reality out there, because why would you ever stop to imagine that there's something beyond what we can sense. Instead, what we all do is we accept reality as it's presented to us.

So let's do a consciousness-raiser on this. Imagine that you are a bloodhound dog. Your whole world is about smelling. You've got a long snout that has 200 million scent receptors in it, and you have wet nostrils that attract and trap scent molecules, and your nostrils even have slits so you can take big nosefuls of air. Everything is about smell for you. So one day, you stop in your tracks with a revelation. You look at your human owner and you think, What is it like to have the pitiful, impoverished nose of a human? What is it like when you take a feeble little noseful of air? How can you not know that there's a cat 100 yards away, or that your neighbor was on this very spot six hours ago?

So because we're humans, we've never experienced that world of smell, so we don't miss it, because we are firmly settled into our umwelt. But the question is: Do we have to be stuck there? So as a neuroscientist, I'm interested in the way that technology might expand our umwelt, and how that's going to change the experience of being human.

So we already know that we can marry our technology to our biology, because there are hundreds of thousands of people walking around with artificial hearing and artificial vision. So the way this works is you take a microphone and you digitize the signal, and you put an electrode strip directly into the inner ear, or with the retinal implant, you take a camera, and you digitize the signal, and then you plug an electrode grid directly into the optic nerve. And as recently as 15 years ago, there were a lot of scientists who thought these technologies wouldn't work. Why? It's because these technologies speak the language of Silicon Valley, and it's not exactly the same dialect as our natural biological sense organs. But the fact is that it works; the brain figures out how to use the signals just fine.

Now, how do we understand that? Well, here's the big secret: Your brain is not hearing or seeing any of this. Your brain is locked in a vault of silence and darkness inside your skull. All it ever sees are electrochemical signals that come in along different data cables, and this is all it has to work with, and nothing more. Now, amazingly, the brain is really good at taking in these signals and extracting patterns and assigning meaning, so that it takes this inner cosmos and puts together a story of this, your subjective world.

But here's the key point: Your brain doesn't know, and it doesn't care, where it gets the data from. Whatever information comes in, it just figures out what to do with it. And this is a very efficient kind of machine. It's essentially a general purpose computing device, and it just takes in everything and figures out what it's going to do with it, and that, I think, frees up Mother Nature to tinker around with different sorts of input channels.

So I call this the P.H. model of evolution, and I don't want to get too technical here, but P.H. stands for Potato Head, and I use this name to emphasize that all these sensors that we know and love, like our eyes and our ears and our fingertips, these are merely peripheral plug-and-play devices: You stick them in, and you're good to go. The brain figures out what to do with the data that comes in. And when you look across the animal kingdom, you find lots of peripheral devices. So, snakes have heat pits with which to detect infrared, and the ghost knifefish has electroreceptors, and the star-nosed mole has this appendage with 22 fingers on it with which it feels around and constructs a 3D model of the world, and many birds have magnetite so they can orient to the magnetic field of the planet. So this means that nature doesn't have to continually redesign the brain. Instead, with the principles of brain operation established, all nature has to worry about is designing new peripherals.

Okay. So what this means is this: The lesson that surface is is that there's nothing really special or fundamental about the biology that we come to the table with. It's just what we have inherited from a complex road of evolution. But it's not what we have to stick with, and our best proof of principle of this comes from what's called sensory substitution. And that refers to feeding information into the brain via unusual sensory channels, and the brain just figures out what to do with it.

Now, that might sound speculative, but the first paper demonstrating this was published in the journal Nature in 1969. So a scientist named Paul Bach-y-Rita put blind people in a modified dental chair, and he set up a video feed, and he put something in front of the camera, and then you would feel that poked into your back with a grid of solenoids. So if you wiggle a coffee cup in front of the camera, you're feeling that in your back, and amazingly, blind people got pretty good at being able to determine what was in front of the camera just by feeling it in the small of their back. Now, there have been many modern incarnations of this. The sonic glasses take a video feed right in front of you and turn that into a sonic landscape, so as things move around, and get closer and farther, it sounds like "Bzz, bzz, bzz." It sounds like a cacophony, but after several weeks, blind people start getting pretty good at understanding what's in front of them just based on what they're hearing. And it doesn't have to be through the ears: This system uses an electrotactile grid on the forehead, so whatever's in front of the video feed, you're feeling it on your forehead. Why the forehead? Because you're not using it for much else.

The most modern incarnation is called the brainport, and this is a little electrogrid that sits on your tongue, and the video feed gets turned into these little electrotactile signals, and blind people get so good at using this that they can throw a ball into a basket, or they can navigate complex obstacle courses. They can come to see through their tongue. Now, that sounds completely insane, right? But remember, all vision ever is is electrochemical signals coursing around in your brain. Your brain doesn't know where the signals come from. It just figures out what to do with them.

So my interest in my lab is sensory substitution for the deaf, and this is a project I've undertaken with a graduate student in my lab, Scott Novich, who is spearheading this for his thesis. And here is what we wanted to do: we wanted to make it so that sound from the world gets converted in some way so that a deaf person can understand what is being said. And we wanted to do this, given the power and ubiquity of portable computing, we wanted to make sure that this would run on cell phones and tablets, and also, we wanted to make this a wearable, something that you could wear under your clothing. So here's the concept. So as I'm speaking, my sound is getting captured by the tablet, and then it's getting mapped onto a vest that's covered in vibratory motors, just like the motors in your cell phone. So as I'm speaking, the sound is getting translated to a pattern of vibration on the vest. Now, this is not just conceptual: this tablet is transmitting Bluetooth, and I'm wearing the vest right now. So as I'm speaking, the sound is getting translated into dynamic patterns of vibration. I'm feeling the sonic world around me.

So, we've been testing this with deaf people now, and it turns out that after just a little bit of time, people can start feeling; they can start understanding the language of the vest.

So this is Jonathan. He's 37 years old. He has a master's degree. He was born profoundly deaf, which means that there's a part of his umwelt that's unavailable to him. So we had Jonathan train with the vest for four days, two hours a day, and here he is on the fifth day.

"You."

So Scott says a word, Jonathan feels it on the vest, and he writes it on the board.

"Where. Where."

Jonathan is able to translate this complicated pattern of vibrations into an understanding of what's being said.

"Touch. Touch."

Now, he's not doing this—Jonathan is not doing this consciously because the patterns are too complicated, but his brain is starting to unlock the pattern that allows it to figure out what the data mean, and our expectation is that, after wearing this for about three months, he will have a direct perceptual experience of hearing in the same way that when a blind person passes a finger over braille, the meaning comes directly off the page without any conscious intervention at all. Now, this technology has the potential to be a game-changer, because the only other solution for deafness is a cochlear implant, and that requires an invasive surgery. And this can be built for 40 times cheaper than a cochlear implant, which opens up this technology globally, even for the poorest countries.

Now, we've been very encouraged by our results with sensory substitution, but what we've been thinking a lot about is sensory addition. How could we use a technology like this to add a completely new kind of sense, to expand the human umvelt? For example, could we feed real-time data from the Internet directly into somebody's brain, and can they develop a direct perceptual experience?

So here's an experiment we're doing in the lab. A subject is feeling a real-time streaming feed from the Net of data for five seconds. Then, two buttons appear, and he has to make a choice. He doesn't know what's going on. He makes a choice, and he gets feedback after one second. Now, here's the thing: The subject has no idea what all the patterns mean, but we're seeing if he gets better at figuring out which button to press. He doesn't know that what we're feeding is real-time data from the stock market, and he's making buy and sell decisions. And the feedback is telling him whether he did the right thing or not. And what we're seeing is, can we expand the human umvelt so that he comes to have, after several weeks, a direct perceptual experience of the economic movements of the planet? So we'll report on that later to see how well this goes.

Here's another thing we're doing: During the talks this morning, we've been automatically scraping Twitter for the TED2015 hashtag, and we've been doing an automated sentiment analysis, which means, are people using positive words or negative words or neutral? And while this has been going on, I have been feeling this, and so I am plugged in to the aggregate emotion of thousands of people in real time. And that's a new kind of human experience, because now I can know how everyone's doing and how much you're loving this. It's a bigger experience than a human can normally have.

We're also expanding the umvelt of pilots. So in this case, the vest is streaming nine different measures from this quadcopter, so pitch and yaw and roll and orientation and heading, and that improves this pilot's ability to fly it. It's essentially like he's extending his skin up there, far away. And that's just the beginning. What we're envisioning is taking a modern cockpit full of gauges, and instead of trying to read the whole thing, you feel it. We live in a world of information now, and there is a difference between accessing big data and experiencing it.

So I think there's really no end to the possibilities on the horizon for human expansion. Just imagine an astronaut being able to feel the overall health of the International Space Station, or for that matter, having you feel the invisible states of your own health, like your blood sugar and the state of your microbiome, or having 360-degree vision, or seeing in infrared or ultraviolet.

So the key is this: As we move into the future, we're going to increasingly be able to choose our own peripheral devices. We no longer have to wait for Mother Nature's sensory gifts on her timescales, but instead, like any good parent, she's given us the tools that we need to go out and define our own trajectory. So the question now is, how do you want to go out and experience your universe?

Thank you.

Did you feel it?

Yeah. Actually, this was the first time I felt applause on the vest. It's nice. It's like a massage.

Twitter's going crazy. If Twitter's going mad. So, that stock market experiment. This could be the first experiment that secures its funding forevermore, right, if successful?

Well, that's right, I wouldn't have to write to NIH anymore.

Well, look, just to be skeptical for a minute, I mean, this is amazing, but isn't most of the evidence so far that sensory substitution works, not necessarily that sensory addition works? I mean, isn't it possible that the blind person can see through their tongue because the visual cortex is still there, ready to process, and that that is needed as part of it?

That's a great question. We actually have no idea what the theoretical limits are of what kind of data the brain can take in. The general story, though, is that it's extraordinarily flexible. So when a person goes blind, what we used to call their visual cortex gets taken over by other things, by touch, by hearing, by vocabulary. So what that tells us is that the cortex is kind of a one-trick pony. It just runs certain kind of computations on thing. And when we look around at things like braille, for example, people are getting information through bumps on their fingers, so I don't think we have any reason to think that there's a theoretical limit that we know the edge of.

If this checks out, you're going to be deluged by—I mean, there are so many possible applications for this. Are you ready for this? What are you most excited about, the direction it might go?

I mean, I think there's a lot of applications here. In terms of beyond sensory substitution, the things I started mentioning about astronauts on the space station, they spend a lot of their time monitoring things, and they could instead just get what's going on, because what this is really good for is multidimensional data. The key is this: Our visual systems are good at detecting blobs and edges, but they're really bad at what our world has become, which is screens with lots and lots of data. We have to crawl that with our attentional systems. So this is a way of just feeling the state of something, just like the way you know the state of your body as you're standing around. So I think heavy machinery, safety, feeling the state of a factory, of your equipment, that's one place it'll go right away.

David Eagleman, that was one mind-blowing talk. Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!