下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Siddharthan Chandran:受損的大腦是否能自我修復?」- Can the Damaged Brain Repair Itself?

觀看次數:2886  • 

框選或點兩下字幕可以直接查字典喔!

I'm very pleased to be here today to talk to you all about how we might repair the damaged brain, and I'm particularly excited by this field, because as a neurologist myself, I believe that this offers one of the great ways that we might be able to offer hope for patients who today live with devastating and yet untreatable diseases of the brain.

So here's the problem. You can see here the picture of somebody's brain with Alzheimer's disease next to a healthy brain, and what's obvious is, in the Alzheimer's brain, ringed red, there's obvious damage—atrophy, scarring. And I could show you equivalent pictures from other disease: multiple sclerosis, motor neuron disease, Parkinson's disease, even Huntington's disease, and they would all tell a similar story. And collectively these brain disorders represent one of the major public health threats of our time. And the numbers here are really rather staggering. At any one time, there are 35 million people today living with one of these brain diseases, and the annual cost globally is 700 billion dollars. I mean, just think about that. That's greater than one percent of the global GDP. And it gets worse, because all these numbers are rising because these are by and large age-related diseases, and we're living longer. So the question we really need to ask ourselves is, why, given the devastating impact of these diseases to the individual, never mind the scale of the societal problem, why are there no effective treatments?

Now in order to consider this, I first need to give you a crash course in how the brain works. So in other words, I need to tell you everything I learned at medical school. But believe me, this isn't going to take very long. Okay? So the brain is terribly simple: it's made up of four cells, and two of them are shown here. There's the nerve cell, and then there's the myelinating cell, or the insulating cell. It's called oligodendrocyte. And when these four cells work together in health and harmony, they create an extraordinary symphony of electrical activity, and it is this electrical activity that underpins our ability to think, to emote, to remember, to learn, move, feel and so on. But equally, each of these individual four cells alone or together, can go rogue or die, and when that happens, you get damage. You get damaged wiring. You get disrupted connections. And that's evident here with the slower conduction. But ultimately, this damage will manifest as disease, clearly. And if the starting dying nerve cell is a motor nerve, for example, you'll get motor neuron disease.

So I'd like to give you a real-life illustration of what happens with motor neuron disease. So this is a patient of mine called John. John, I saw just last week in the clinic. And I've asked John to tell us something about what were his problems that led to the initial diagnosis of motor neuron disease.

I was diagnosed in October in 2011, and the main problem was a breathing problem, difficulty breathing.

I don't know if you caught all of that, but what John was telling us was that difficulty with breathing led eventually to the diagnosis of motor neuron disease. So John's now 18 months further down in that journey, and I've now asked him to tell us something about his current predicament.

What I've got now is the breathing's gotten worse. I've got weakness in my hands, my arms and my legs. So basically I'm in a wheelchair most of the time.

John's just told us he's in a wheelchair most of the time. So what these two clips show is not just the devastating consequence of the disease, but they also tell us something about the shocking pace of the disease, because in just 18 months, a fit adult man has been rendered wheelchair- and respirator-dependent. And let's face it, John could be anybody's father, brother or friend.

So that's what happens when the motor nerve dies. But what happens when that myelin cell dies? You get multiple sclerosis. So the scan on your left is an illustration of the brain, and it's a map of the connections of the brain, and superimposed upon which are areas of damage. We call them lesions of demyelination. But they're damage, and they're white.
So I know what you're thinking here. You're thinking, "My God, this bloke came up and said he's going to talk about hope, and all he's done is give a really rather bleak and depressing tale." I've told you these diseases are terrible. They're devastating, numbers are rising, the costs are ridiculous, and worst of all, we have no treatment. Where's the hope?

Well, you know what? I think there is hope. And there's hope in this next section, of this brain section of somebody else with M.S., because what it illustrates is, amazingly, the brain can repair itself. It just doesn't do it well enough. And so again, there are two things I want to show you. First of all is the damage of this patient with M.S. And again, it's another one of these white masses. But crucially, the area that's ringed red highlights an area that is pale blue. But that area that is pale blue was once white. So it was damaged. It's now repaired. Just to be clear: It's not because of doctors. It's in spite of doctors, not because of doctors. This is spontaneous repair. It's amazing and it's occurred because there are stem cells in the brain, even, which can enable new myelin, new insulation, to be laid down over the damaged nerves. And this observation is important for two reasons. The first is it challenges one of the orthodoxies that we learnt at medical school, or at least I did, admittedly last century, which is that the brain doesn't repair itself, unlike, say, the bone or the liver. But actually it does, but it just doesn't do it well enough. And the second thing it does, and it gives us a very clear direction of travel for new therapies—I mean, you don't need to be a rocket scientist to know what to do here. You simply need to find ways of promoting the endogenous, spontaneous repair that occurs anyway.

So the question is, Why, if we've known that for some time, as we have, why do we not have those treatments? And that in part reflects the complexity of drug development. Now, drug development you might think of as a rather expensive but risky bet, and the odds of this bet are roughly this: they're 10,000 to one against, because you need to screen about 10,000 compounds to find that one potential winner. And then you need to spend 15 years and spend over a billion dollars, and even then, you may not have a winner.

So the question for us is, can you change the rules of the game and can you shorten the odds? And in order to do that, you have to think, where is the bottleneck in this drug discovery? And one of the bottlenecks is early in drug discovery. All that screening occurs in animal models. But we know that the proper study of mankind is man, to borrow from Alexander Pope. So the question is, can we study these diseases using human material? And of course, absolutely we can. We can use stem cells, and specifically we can use human stem cells. And human stem cells are these extraordinary but simple cells that can do two things: they can self-renew or make more of themselves, but they can also become specialized to make bone, liver or, crucially, nerve cells, maybe even the motor nerve cell or the myelin cell. And the challenge has long been, can we harness the power, the undoubted power of these stem cells in order to realize their promise for regenerative neurology?

And I think we can now, and the reason we can is because there have been several major discoveries in the last 10, 20 years. One of them was here in Edinburgh, and it must be the only celebrity sheep, Dolly. So Dolly was made in Edinburgh, and Dolly was an example of the first cloning of a mammal from an adult cell. But I think the even more significant breakthrough for the purposes of our discussion today was made in 2006 by a Japanese scientist called Yamanaka. And what Yamaka did, in a fantastic form of scientific cookery, was he showed that four ingredients, just four ingredients, could effectively convert any cell, adult cell, into a master stem cell. And the significance of this is difficult to exaggerate, because what it means that from anybody in this room, but particularly patients, you could now generate a bespoke, personalized tissue repair kit. Take a skin cell, make it a master pluripotent cell, so you could then make those cells that are relevant to their disease, both to study but potentially to treat. Now, the idea of that at medical school—this is a recurring theme, isn't it, me and medical school?—would have been ridiculous, but it's an absolute reality today. And I see this as the cornerstone of regeneration, repair and hope.

And whilst we're on the theme of hope, for those of you who might have failed at school, there's hope for you as well, because this is the school report of John Gerdon. So they didn't think much of him then. But what you may not know is that he got the Nobel Prize for medicine just three months ago.

So to return to the original problem, what is the opportunity of these stem cells, or this disruptive technology, for repairing the damaged brain, which we call regenerative neurology? I think there are two ways you can think about this: as a fantastic 21st-century drug discovery tool, and/or as a form of therapy. So I want to tell you a little bit about both of those in the next few moments.

Drug discovery in a dish is how people often talk about this. It's very simple: You take a patient with a disease, let's say motor neuron disease, you take a skin sample, you do the pluripotent reprogramming, as I've already told you, and you generate live motor nerve cells. That's straightforward, because that's what pluripotent cells can do. But crucially, you can then compare their behavior to their equivalent but healthy counterparts, ideally from an unaffected relative. That way, you're matching for genetic variation.

And that's exactly what we did here. This was a collaboration with colleagues: in London, Chris Shaw; in the U.S., Steve Finkbeiner and Tom Maniatis. And what you're looking at, and this is amazing, these are living, growing, motor nerve cells from a patient with motor neuron disease. It happens to be an inherited form. I mean, just imagine that. This would have been unimaginable 10 years ago. So apart from seeing them grow and put out processes, we can also engineer them so that they fluoresce, but crucially, we can then track their individual health and compare the diseased motor nerve cells to the healthy ones. And when you do all that and put it together, you realize that the diseased ones, which is represented in the red line, are two and a half times more likely to die than the healthy counterpart. And the crucial point about this is that you then have a fantastic assay to discover drugs, because what would you ask of the drugs, and you could do this through a high-throughput automated screening system, you'd ask the drugs, give me one thing: find me a drug that will bring the red line closer to the blue line, because that drug will be a high-value candidate that you could probably take direct to human trial and almost bypass that bottleneck that I've told you about in drug discovery with the animal models, if that makes sense. It's fantastic.

But I want to come back to how you might use stem cells directly to repair damage. And again there are two ways to think about this, and they're not mutually exclusive. The first, and I think in the long run the one that will give us the biggest dividend, but it's not thought of that way just yet, is to think about those stem cells that are already in your brain, and I've told you that. All of us have stem cells in the brain, even the diseased brain, and surely the smart way forward is to find ways that you can promote and activate those stem cells in your brain already to react and respond appropriately to damage to repair it. That will be the future. There will be drugs that will do that.

But the other way is to effectively parachute in cells, transplant them in, to replace dying or lost cells, even in the brain. And I want to tell you now an experiment, it's a clinical trial that we did, which recently completed, which is with colleagues in UCL, David Miller in particular. So this study was very simple. We took patients with multiple sclerosis and asked a simple question: Would stem cells from the bone marrow be protective of their nerves? So what we did was we took this bone marrow, grew up the stem cells in the lab, and then injected them back into the vein. I'm making this sound really simple. It took five years off a lot of people, okay? And it put gray hair on me and caused all kinds of issues. But conceptually, it's essentially simple. So we've given them into the vein, right? So in order to measure whether this was successful or not, we measured the optic nerve as our outcome measure. And that's a good thing to measure in M.S., because patients with M.S. sadly suffer with problems with vision—loss of vision, unclear vision. And so we measured the size of the optic nerve using the scans with David Miller three times—12 months, six months, and before the infusion—and you can see the gently declining red line. And that's telling you that the optic nerve is shrinking, which makes sense, because their nerves are dying. We then gave the stem cell infusion and repeated the measurement twice—three months and six months—and to our surprise, almost, the line's gone up. That suggests that the intervention has been protective. I don't think myself that what's happened is that those stem cells have made new myelin or new nerves. What I think they've done is they've promoted the endogenous stem cells, or precursor cells, to do their job, wake up, lay down new myelin. So this is a proof of concept. I'm very excited about that.

So I just want to end with the theme I began on, which was regeneration and hope. So here I've asked John what his hopes are for the future.

I would hope that sometime in the future through the research that you people are doing, we can come up with a cure so that people like me can lead a normal life.

I mean, that speaks volumes. But I'd like to close by first of all thanking John—thanking John for allowing me to share his insights and these clips with you all. But I'd also like to add to John and to others that my own view is, I'm hopeful for the future. I do believe that the disruptive technologies like stem cells that I've tried to explain to you do offer very real hope. And I do think that the day that we might be able to repair the damaged brain is sooner than we think. Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!