下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Alan Kay:用電腦改變教育」- A Powerful Idea about Ideas

觀看次數:3142  • 

框選或點兩下字幕可以直接查字典喔!

A great way to start, I think, with my view of simplicity is to take a look at TED. Here you are, understanding why we're here, what's going on with no difficulty at all. The best A.I. in the planet would find it complex and confusing, and my little dog Watson would find it simple and understandable but would miss the point. He would have a great time. And of course, if you're a speaker here, like Hans Rosling, a speaker finds this complex, tricky. But in Hans Rosling's case, he had a secret weapon yesterday, literally, in his sword swallowing act. And I must say, I thought of quite a few objects that I might try to swallow today and finally gave up on, but he just did it and that was a wonderful thing.

So Puck meant not only are we fools in the pejorative sense, but that we're easily fooled. In fact, what Shakespeare was pointing out is we go to the theater in order to be fooled, so we're actually looking forward to it. We go to magic shows in order to be fooled. And this makes many things fun, but it makes it difficult to actually get any kind of picture on the world we live in or on ourselves.

And our friend, Betty Edwards, the "Drawing on the Right Side of the Brain" lady, shows these two tables to her drawing class and says, "The problem you have with learning to draw is not that you can't move your hand, but that the way your brain perceives images is faulty. It's trying to perceive images into objects rather than seeing what's there." And to prove it, she says, "The exact size and shape of these tabletops is the same, and I'm going to prove it to you." She does this with cardboard, but since I have an expensive computer here I'll just rotate this little guy around and ... Now having seen that—and I've seen it hundreds of times, because I use this in every talk I give—I still can't see that they're the same size and shape, and I doubt that you can either.

So what do artists do? Well, what artists do is to measure. They measure very, very carefully. And if you measure very, very carefully with a stiff arm and a straight edge, you'll see that those two shapes are exactly the same size. And the Talmud saw this a long time ago, saying, "We see things not as they are, but as we are." I certainly would like to know what happened to the person who had that insight back then, if they actually followed it to its ultimate conclusion.

So if the world is not as it seems and we see things as we are, then what we call reality is a kind of hallucination happening inside here. It's a waking dream, and understanding that that is what we actually exist in is one of the biggest epistemological barriers in human history. And what that means: "simple and understandable" might not be actually simple or understandable, and things we think are "complex" might be made simple and understandable. Somehow we have to understand ourselves to get around our flaws. We can think of ourselves as kind of a noisy channel. The way I think of it is, we can't learn to see until we admit we're blind. Once you start down at this very humble level, then you can start finding ways to see things. And what's happened, over the last 400 years in particular, is that human beings have invented "brainlets"—little additional parts for our brain—made out of powerful ideas that help us see the world in different ways. And these are in the form of sensory apparatus—telescopes, microscopes—reasoning apparatus—various ways of thinking—and, most importantly, in the ability to change perspective on things.

I'll talk about that a little bit. It's this change in perspective on what it is we think we're perceiving that has helped us make more progress in the last 400 years than we have in the rest of human history. And yet, it is not taught in any K through 12 curriculum in America that I'm aware of.

So one of the things that goes from simple to complex is when we do more. We like more. If we do more in a kind of a stupid way, the simplicity gets complex and, in fact, we can keep on doing it for a very long time. But Murray Gell-Mann yesterday talked about emergent properties; another name for them could be "architecture" as a metaphor for taking the same old material and thinking about non-obvious, non-simple ways of combining it. And in fact, what Murray was talking about yesterday in the fractal beauty of nature—of having the descriptions at various levels be rather similar—all goes down to the idea that the elementary particles are both sticky and standoffish, and they're in violent motion. Those three things give rise to all the different levels of what seem to be complexity in our world.

But how simple? So, when I saw Roslings' Gapminder stuff a few years ago, I just thought it was the greatest thing I'd seen in conveying complex ideas simply. But then I had a thought of, "Boy, maybe it's too simple." And I put some effort in to try and check to see how well these simple portrayals of trends over time actually matched up with some ideas and investigations from the side, and I found that they matched up very well. So the Roslings have been able to do simplicity without removing what's important about the data.

Whereas the film yesterday that we saw of the simulation of the inside of a cell, as a former molecular biologist, I didn't like that at all. Not because it wasn't beautiful or anything, but because it misses the thing that most students fail to understand about molecular biology, and that is: why is there any probability at all of two complex shapes finding each other just the right way so they combine together and be catalyzed? And what we saw yesterday was every reaction was fortuitous; they just swooped in the air and bound, and something happened. But in fact, those molecules are spinning at the rate of about a million revolutions per second; they're agitating back and forth their size every two nano seconds; they're completely crowded together, they're jammed, they're bashing up against each other. And if you don't understand that in your mental model of this stuff, what happens inside of a cell seems completely mysterious and fortuitous, and I think that's exactly the wrong image for when you're trying to teach science.

So, another thing that we do is to confuse adult sophistication with the actual understanding of some principle. So a kid who's 14 in high school gets this version of the Pythagorean theorem, which is a truly subtle and interesting proof, but in fact it's not a good way to start learning about mathematics. So a more direct one, one that gives you more of the feeling of math, is something closer to Pythagoras' own proof, which goes like this: so here we have this triangle, and if we surround that C square with three more triangles and we copy that, notice that we can move those triangles down like this. And that leaves two open areas that are kind of suspicious ... and bingo. That is all you have to do. And this kind of proof is the kind of proof that you need to learn when you're learning mathematics in order to get an idea of what it means before you look into the, literally, 1,200 or 1,500 proofs of Pythagoras' theorem that have been discovered.

Now let's go to young children. This is a very unusual teacher who was a kindergarten and first-grade teacher, but was a natural mathematician. So she was like that jazz musician friend you have who never studied music but is a terrific musician; she just had a feeling for math. And here are her six-year-olds, and she's got them making shapes out of a shape. So they pick a shape they like—like a diamond, or a square, or a triangle, or a trapezoid—and then they try and make the next larger shape of that same shape, and the next larger shape. You can see the trapezoids are a little challenging there.

And what this teacher did on every project was to have the children act like first it was a creative arts project, and then something like science. So they had created these artifacts. Now she had them look at them and do this...laborious, which I thought for a long time, until she explained to me was to slow them down so they'll think. So they're cutting out the little pieces of cardboard here and pasting them up.

But the whole point of this thing is for them to look at this chart and fill it out. "What have you noticed about what you did?" And so six-year-old Lauren there noticed that the first one took one, and the second one took three more and the total was four on that one, the third one took five more and the total was nine on that one, and then the next one. She saw right away that the additional tiles that you had to add around the edges was always going to grow by two, so she was very confident about how she made those numbers there. And she could see that these were the square numbers up until about six, where she wasn't sure what six times six was and what seven times seven was, but then she was confident again. So that's what Lauren did.

And then the teacher, Gillian Ishijima, had the kids bring all of their projects up to the front of the room and put them on the floor, and everybody went bat shit: "Holy shit! They're the same!" No matter what the shapes were, the growth law is the same. And the mathematicians and scientists in the crowd will recognize these two progressions as a first-order discrete differential equation and a second-order discrete differential equation, derived by six-year-olds. Well, that's pretty amazing. That isn't what we usually try to teach six-year-olds.

So, let's take a look now at how we might use the computer for some of this. And so the first idea here is just to show you the kind of things that children do. I'm using the software that we're putting on the $100 laptop. So I'd like to draw a little car here—I'll just do this very quickly—and put a big tire on him. And I get a little object here and I can look inside this object, I'll call it a car. And here's a little behavior: car forward. Each time I click it, car turn. If I want to make a little script to do this over and over again, I just drag these guys out and set them going. And I can try steering the car here by...See the car turn by five here? So what if I click this down to zero? It goes straight. That's a big revelation for nine-year-olds. Make it go in the other direction. But of course, that's a little bit like kissing your sister as far as driving a car, so the kids want to do a steering wheel; so they draw a steering wheel. And we'll call this a wheel. See this wheel's heading here? If I turn this wheel, you can see that number over there going minus and positive. That's kind of an invitation to pick up this name of those numbers coming out there and to just drop it into the script here, and now I can steer the car with the steering wheel.

And it's interesting. You know how much trouble the children have with variables, but by learning it this way, in a situated fashion, they never forget from this single trial what a variable is and how to use it. And we can reflect here the way Gillian Ishijima did. So if you look at the little script here, the speed is always going to be 30. We're going to move the car according to that over and over again. And I'm dropping a little dot for each one of these things; they're evenly spaced because they're 30 apart. And what if I do this progression that the six-year-olds did of saying, "OK, I'm going to increase the speed by two each time, and then I'm going to increase the distance by the speed each time? What do I get there?" We get a visual pattern of what these nine-year-olds called acceleration.

So how do the children do science?

Objects that you think will fall to the Earth at the same time.

Ooh, this is nice.

Do not pay any attention to what anybody else is doing. Who's got the apple?

They've got little stopwatches. What did you get? What did you get? Stopwatches aren't accurate enough.

0.99 seconds.

So put "sponge ball"...

Student 4l: [I decided to] do the shot put and the sponge ball because they're two totally different weights, and if you drop them at the same time, maybe they'll drop at the same speed.

Drop. Whoa!
So obviously, Aristotle never asked a child about this particular point because, of course, he didn't bother doing the experiment, and neither did St. Thomas Aquinas. And it was not until Galileo actually did it that an adult thought like a child, only 400 years ago. We get one child like that about every classroom of 30 kids who will actually cut straight to the chase.

Now, what if we want to look at this more closely? We can take a movie of what's going on, but even if we single stepped this movie, it's tricky to see what's going on. And so what we can do is we can lay out the frames side by side or stack them up. So when the children see this, they say, "Ah! Acceleration," remembering back four months when they did their cars sideways, and they start measuring to find out what kind of acceleration it is. So what I'm doing is measuring from the bottom of one image to the bottom of the next image, about a fifth of a second later, like that. And they're getting faster and faster each time, and if I stack these guys up, then we see the differences; the increase in the speed is constant. And they say, "Oh, yeah. Constant acceleration. We've done that already." And how shall we look and verify that we actually have it? So you can't tell much from just making the ball drop there, but if we drop the ball and run the movie at the same time, we can see that we have come up with an accurate physical model.

Galileo, by the way, did this very cleverly by running a ball backwards down the strings of his lute. I pulled out those apples to remind myself to tell you that this is actually probably a Newton and the apple type story, but it's a great story. And I thought I would do just one thing on the $100 laptop here just to prove that this stuff works here. So once you have gravity, here's this—increase the speed by something, increase the ship's speed. If I start the little game here that the kids have done, it'll crash the space ship. But if I oppose gravity, here we go ... Oops! One more. Yeah, there we go. Yeah, OK?

I guess the best way to end this is with two quotes: Marshall McLuhan said, "Children are the messages that we send to the future," but in fact, if you think of it, children are the future we send to the future. Forget about messages; children are the future, and children in the first and second world and, most especially, in the third world need mentors. And this summer, we're going to build five million of these $100 laptops, and maybe 50 million next year. But we couldn't create 1,000 new teachers this summer to save our life. That means that we, once again, have a thing where we can put technology out, but the mentoring that is required to go from a simple new iChat instant messaging system to something with depth is missing. I believe this has to be done with a new kind of user interface, and this new kind of user interface could be done with an expenditure of about 100 million dollars. It sounds like a lot, but it is literally 18 minutes of what we're spending in Iraq—we're spending 8 billion dollars a month; 18 minutes is 100 million dollars—so this is actually cheap. And Einstein said, "Things should be as simple as possible, but not simpler." Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!