下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Patricia Burchat:一窺暗物質清晰面貌」- Shedding Light on Dark Matter

觀看次數:2238  • 

框選或點兩下字幕可以直接查字典喔!

As a particle physicist, I study the elementary particles and how they interact on the most fundamental level. For most of my research career, I've been using accelerators, such as the electron accelerator at Stanford University, just up the road, to study things on the smallest scale. But more recently, I've been turning my attention to the universe on the largest scale. Because, as I'll explain to you, the questions on the smallest and the largest scale are actually very connected. So I'm going to tell you about our twenty-first-century view of the universe, what it's made of and what the big questions in the physical sciences are—at least some of the big questions.

So, recently, we have realized that the ordinary matter in the universe—and by ordinary matter, I mean you, me, the planets, the stars, the galaxies—the ordinary matter makes up only a few percent of the content of the universe. Almost a quarter, or approximately a quarter of the matter in the universe, is stuff that's invisible. By invisible, I mean it doesn't absorb in the electromagnetic spectrum. It doesn't emit in the electromagnetic spectrum. It doesn't reflect. It doesn't interact with the electromagnetic spectrum, which is what we use to detect things. It doesn't interact at all. So how do we know it's there? We know it's there by its gravitational effects. In fact, this dark matter dominates the gravitational effects in the universe on a large scale, and I'll be telling you about the evidence for that.

What about the rest of the pie? The rest of the pie is a very mysterious substance called dark energy. More about that later, OK. So for now, let's turn to the evidence for dark matter. In these galaxies, especially in a spiral galaxy like this, most of the mass of the stars is concentrated in the middle of the galaxy. This huge mass of all these stars keeps stars in circular orbits in the galaxy. So we have these stars going around in circles like this. As you can imagine, even if you know physics, this should be intuitive, OK—that stars that are closer to the mass in the middle will be rotating at a higher speed than those that are further out here, OK.

So what you would expect is that if you measured the orbital speed of the stars, that they should be slower on the edges than on the inside. In other words, if we measured speed as a function of distance—this is the only time I'm going to show a graph, OK—we would expect that it goes down as the distance increases from the center of the galaxy. When those measurements are made, instead what we find is that the speed is basically constant, as a function of distance. If it's constant, that means that the stars out here are feeling the gravitational effects of matter that we do not see. In fact, this galaxy and every other galaxy appears to be embedded in a cloud of this invisible dark matter. And this cloud of matter is much more spherical than the galaxy themselves, and it extends over a much wider range than the galaxy. So we see the galaxy and fixate on that, but it's actually a cloud of dark matter that's dominating the structure and the dynamics of this galaxy.

Galaxies themselves are not strewn randomly in space; they tend to cluster. And this is an example of a very, actually, famous cluster, the Coma cluster. And there are thousands of galaxies in this cluster. They're the white, fuzzy, elliptical things here. So these galaxy clusters—we take a snapshot now, we take a snapshot in a decade, it'll look identical. But these galaxies are actually moving at extremely high speeds. They're moving around in this gravitational potential well of this cluster, OK. So all of these galaxies are moving. We can measure the speeds of these galaxies, their orbital velocities, and figure out how much mass is in this cluster.

And again, what we find is that there is much more mass there than can be accounted for by the galaxies that we see. Or if we look in other parts of the electromagnetic spectrum, we see that there's a lot of gas in this cluster, as well. But that cannot account for the mass either. In fact, there appears to be about ten times as much mass here in the form of this invisible or dark matter as there is in the ordinary matter, OK. It would be nice if we could see this dark matter a little bit more directly. I'm just putting this big, blue blob on there, OK, to try to remind you that it's there. Can we see it more visually? Yes, we can.

And so let me lead you through how we can do this. So here's an observer: it could be an eye; it could be a telescope. And suppose there's a galaxy out here in the universe. How do we see that galaxy? A ray of light leaves the galaxy and travels through the universe for perhaps billions of years before it enters the telescope or your eye. Now, how do we deduce where the galaxy is? Well, we deduce it by the direction that the ray is traveling as it enters our eye, right? We say, the ray of light came this way; the galaxy must be there, OK. Now, suppose I put in the middle a cluster of galaxies—and don't forget the dark matter, OK. Now, if we consider a different ray of light, one going off like this, we now need to take into account what Einstein predicted when he developed general relativity. And that was that the gravitational field, due to mass, will deflect not only the trajectory of particles, but will deflect light itself.

So this light ray will not continue in a straight line, but would rather bend and could end up going into our eye. Where will this observer see the galaxy? You can respond. Up, right? We extrapolate backwards and say the galaxy is up here. Is there any other ray of light that could make into the observer's eye from that galaxy? Yes, great. I see people going down like this. So a ray of light could go down, be bent up into the observer's eye, and the observer sees a ray of light here.

Now, take into account the fact that we live in a three-dimensional universe, OK, a three-dimensional space. Are there any other rays of light that could make it into the eye? Yes! The rays would lie on a—I'd like to see—yeah, on a cone. So there's a whole ray of light—rays of light on a cone—that will all be bent by that cluster and make it into the observer's eye. If there is a cone of light coming into my eye, what do I see? A circle, a ring. It's called an Einstein ring. Einstein predicted that, OK. Now, it will only be a perfect ring if the source, the deflector and the eyeball, in this case, are all in a perfectly straight line. If they're slightly skewed, we'll see a different image.

Now, you can do an experiment tonight over the reception, OK, to figure out what that image will look like. Because it turns out that there is a kind of lens that we can devise, that has the right shape to produce this kind of effect. We call this gravitational lensing. And so, this is your instrument, OK. But ignore the top part. It's the base that I want you to concentrate, OK. So, actually, at home, whenever we break a wineglass, I save the bottom, take it over to the machine shop. We shave it off, and I have a little gravitational lens, OK. So it's got the right shape to produce the lensing. And so the next thing you need to do in your experiment is grab a napkin. I grabbed a piece of graph paper—I'm a physicist. So, a napkin. Draw a little model galaxy in the middle. And now put the lens over the galaxy, and what you'll find is that you'll see a ring, an Einstein ring. Now, move the base off to the side, and the ring will split up into arcs, OK. And you can put it on top of any image. On the graph paper, you can see how all the lines on the graph paper have been distorted. And again, this is a kind of an accurate model of what happens with the gravitational lensing.

OK, so the question is: do we see this in the sky? Do we see arcs in the sky when we look at, say, a cluster of galaxies? And the answer is yes. And so, here's an image from the Hubble Space Telescope. Many of the images you are seeing are earlier from the Hubble Space Telescope. Well, first of all, for the golden shape galaxies—those are the galaxies in the cluster. They're the ones that are embedded in that sea of dark matter that are causing the bending of the light to cause these optical illusions, or mirages, practically, of the background galaxies. So the streaks that you see, all these streaks, are actually distorted images of galaxies that are much further away.

So what we can do, then, is based on how much distortion we see in those images, we can calculate how much mass there must be in this cluster. And it's an enormous amount of mass. And also, you can tell by eye, by looking at this, that these arcs are not centered on individual galaxies. They are centered on some more spread out structure, and that is the dark matter in which the cluster is embedded, OK. So this is the closest you can get to kind of seeing at least the effects of the dark matter with your naked eye.

OK, so, a quick review then, to see that you're following. So the evidence that we have that a quarter of the universe is dark matter—this gravitationally attracting stuff—is that galaxies, the speed with which stars orbiting galaxies is much too large; it must be embedded in dark matter. The speed with which galaxies within clusters are orbiting is much too large; it must be embedded in dark matter. And we see these gravitational lensing effects, these distortions that say that, again, clusters are embedded in dark matter.

OK. So now, let's turn to dark energy. So to understand the evidence for dark energy, we need to discuss something that Stephen Hawking referred to in the previous session. And that is the fact that space itself is expanding. So if we imagine a section of our infinite universe—and so I've put down four spiral galaxies, OK—and imagine that you put down a set of tape measures, so every line on here corresponds to a tape measure, horizontal or vertical, for measuring where things are. If you could do this, what you would find that with each passing day, each passing year, each passing billions of years, OK, the distance between galaxies is getting greater. And it's not because galaxies are moving away from each other through space. They're not necessarily moving through space. They're moving away from each other because space itself is getting bigger, OK. That's what the expansion of the universe or space means. So they're moving further apart.

Now, what Stephen Hawking mentioned, as well, is that after the Big Bang, space expanded at a very rapid rate. But because gravitationally attracting matter is embedded in this space, it tends to slow down the expansion of the space, OK. So the expansion slows down with time. So, in the last century, OK, people debated about whether this expansion of space would continue forever; whether it would slow down, you know, will be slowing down, but continue forever; slow down and stop, asymptotically stop; or slow down, stop, and then reverse, so it starts to contract again. So a little over a decade ago, two groups of physicists and astronomers set out to measure the rate at which the expansion of space was slowing down, OK. By how much less is it expanding today, compared to, say, a couple of billion years ago?

The startling answer to this question, OK, from these experiments, was that space is expanding at a faster rate today than it was a few billion years ago, OK. So the expansion of space is actually speeding up. This was a completely surprising result. There is no persuasive theoretical argument for why this should happen, OK. No one was predicting ahead of time this is what's going to be found. It was the opposite of what was expected. So we need something to be able to explain that. Now it turns out, in the mathematics, you can put it in as a term that's an energy, but it's a completely different type of energy from anything we've ever seen before. We call it dark energy, and it has this effect of causing space to expand. But we don't have a good motivation for putting it in there at this point, OK. So it's really unexplained as to why we need to put it in.

Now, so at this point, then, what I want to really emphasize to you, is that, first of all, dark matter and dark energy are completely different things, OK. There are really two mysteries out there as to what makes up most of the universe, and they have very different effects. Dark matter, because it gravitationally attracts, it tends to encourage the growth of structure, OK. So clusters of galaxies will tend to form, because of all this gravitational attraction. Dark energy, on the other hand, is putting more and more space between the galaxies, makes it, the gravitational attraction between them decrease, and so it impedes the growth of structure. So by looking at things like clusters of galaxies, and how they—their number density, how many there are as a function of time—we can learn about how dark matter and dark energy compete against each other in structure forming.

In terms of dark matter, I said that we don't have any, you know, really persuasive argument for dark energy. Do we have anything for dark matter? And the answer is yes. We have well-motivated candidates for the dark matter. Now, what do I mean by well motivated? I mean that we have mathematically consistent theories that were actually introduced to explain a completely different phenomenon, OK, things that I haven't even talked about, that each predict the existence of a very weakly interacting, new particle.

So, this is exactly what you want in physics: where a prediction comes out of a mathematically consistent theory that was actually developed for something else. But we don't know if either of those are actually the dark matter candidate, OK. One or both, who knows? Or it could be something completely different. Now, we look for these dark matter particles because, after all, they are here in the room, OK, and they didn't come in the door. They just pass through anything. They can come through the building, through the Earth—they're so non-interacting.

So one way to look for them is to build detectors that are extremely sensitive to a dark matter particle coming through and bumping it. So a crystal that will ring if that happens. So one of my colleagues up the road and his collaborators have built such a detector. And they've put it deep down in an iron mine in Minnesota, OK, deep under the ground, and in fact, in the last couple of days announced the most sensitive results so far. They haven't seen anything, OK, but it puts limits on what the mass and the interaction strength of these dark matter particles are. There's going to be a satellite telescope launched later this year and it will look towards the middle of the galaxy, to see if we can see dark matter particles annihilating and producing gamma rays that could be detected with this. The Large Hadron Collider, a particle physics accelerator, that we'll be turning on later this year. It is possible that dark matter particles might be produced at the Large Hadron Collider.

Now, because they are so non-interactive, they will actually escape the detector, so their signature will be missing energy, OK. Now, unfortunately, there is a lot of new physics whose signature could be missing energy, so it will be hard to tell the difference. And finally, for future endeavors, there are telescopes being designed specifically to address the questions of dark matter and dark energy—ground-based telescopes, and there are three space-based telescopes that are in competition right now to be launched to investigate dark matter and dark energy. So in terms of the big questions: what is dark matter? What is dark energy? The big questions facing physics. And I'm sure you have lots of questions, which I very much look forward to addressing over the next 72 hours, while I'm here. Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!