下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Craig Venter:未來,人類將能打造生命」- On the Verge of Creating Synthetic Life

觀看次數:2813  • 

框選或點兩下字幕可以直接查字典喔!

mismatch srt number = 9 play
mismatch srt number = 28 play
mismatch srt number = 33 play
mismatch srt number = 42 play
mismatch srt number = 44 play
mismatch srt number = 77 play
mismatch srt number = 91 play
mismatch srt number = 92 play
mismatch srt number = 95 play
mismatch srt number = 117 play
mismatch srt number = 145 play
mismatch srt number = 153 play
==================================

You know, I've talked about some of these projects before-about the human genome and what that might mean, and discovering new sets of genes. We're actually starting at a new point: we've been digitizing biology, and now we're trying to go from that digital code into a new phase of biology with designing and synthesizing life.
¬¬
So, we've always been trying to ask big questions. "What is life?" is something that I think many biologists have been trying to understand at various levels. We've tried various approaches, paring it down to minimal components. We've been digitizing it now for almost 20 years; when we sequenced the human genome, it was going from the analog world of biology into the digital world of the computer. Now we're trying to ask, "Can we regenerate life or can we create new life out of this digital universe?"
This is the map of a small organism, Mycoplasma genitalium, that has the smallest genome for a species that can self-replicate in the laboratory, and we've been trying to just see if we can come up with an even smaller genome. We're able to knock out on the order of 100 genes out of the 500 or so that are here. When we look at its metabolic map, it's relatively simple compared to ours-trust me, this is simplebut when we look at all the genes that we can knock out one at a time, it's very unlikely that this would yield a living cell. So we decided the only way forward was to actually synthesize this chromosome so we could vary the components to ask some of these most fundamental questions. And so we started down the road of: can we synthesize a chromosome? Can chemistry permit making these really large molecules where we've never been before? And if we do, can we boot up a chromosome? A chromosome, by the way, is just a piece of inert chemical material. So, our pace of digitizing life has been increasing at an exponential pace.

Our ability to write the genetic code has been moving pretty slowly but has been increasing, and our latest point would put it on, now, an exponential curve. We started this over 15 years ago. It took several stages, in fact, starting with a bioethical review before we did the first experiments. But it turns out synthesizing DNA is very difficult. There are tens of thousands of machines around the world that make small pieces of DNA-30 to 50 letters in length-and it's a degenerate process, so the longer you make the piece, the more errors there are. So we had to create a new method for putting these little pieces together and correct all the errors.

And this was our first attempt, starting with the digital information of the genome of phi X174. It's a small virus that kills bacteria. We designed the pieces, went through our error correction and had a DNA molecule of about 5,000 letters. The exciting phase came when we took this piece of inert chemical and put it in the bacteria, and the bacteria started to read this genetic code, made the viral particles. The viral particles then were released from the cells and came back and killed the E. coli. I was talking to the oil industry recently and I said they clearly understood that model.

They laughed more than you guys are. And so, we think this is a situation where the software can actually build its own hardware in a biological system. But we wanted to go much larger: we wanted to build the entire bacterial chromosomeit's over 580,000 letters of genetic codeso we thought we'd build them in cassettes the size of the viruses so we could actually vary the cassettes to understand what the actual components of a living cell are. Design is critical, and if you're starting with digital information in the computer, that digital information has to be really accurate. When we first sequenced this genome in 1995, the standard of accuracy was one error per 10,000 base pairs. We actually found, on resequencing it, 30 errors; had we used that original sequence, it never would have been able to be booted up. Part of the design is designing pieces that are 50 letters long that have to overlap with all the other 50-letter pieces to build smaller subunits we have to design so they can go together. We design unique elements into this.

You may have read that we put watermarks in. Think of this: we have a four-letter genetic code-A, C, G and T. Triplets of those letters code for roughly 20 amino acids, such that there's a single letter designation for each of the amino acids. So we can use the genetic code to write out words, sentences, thoughts. Initially, all we did was autograph it. Some people were disappointed there was not poetry. We designed these pieces so we can just chew back with enzymes; there are enzymes that repair them and put them together. And we started making pieces, starting with pieces that were 5,000 to 7,000 letters, put those together to make 24,000-letter pieces, then put sets of those going up to 72,000.

At each stage, we grew up these pieces in abundance so we could sequence them because we're trying to create a process that's extremely robust that you can see in a minute. We're trying to get to the point of automation. So, this looks like a basketball playoff. When we get into these really large pieces over 100,000 base pairs, they won't any longer grow readily in E. coli-it exhausts all the modern tools of molecular biology-and so we turned to other mechanisms. We knew there's a mechanism called homologous recombination that biology uses to repair DNA that can put pieces together. Here's an example of it: there's an organism called Deinococcus radiodurans that can take three millions rads of radiation.

You can see in the top panel, its chromosome just gets blown apart. Twelve to 24 hours later, it put it back together exactly as it was before. We have thousands of organisms that can do this. These organisms can be totally desiccated; they can live in a vacuum. I am absolutely certain that life can exist in outer space, move around, find a new aqueous environment. In fact, NASA has shown a lot of this is out there.

Here's an actual micrograph of the molecule we built using these processes, actually just using yeast mechanisms with the right design of the pieces we put them in; yeast puts them together automatically. This is not an electron micrograph; this is just a regular photomicrograph. It's such a large molecule we can see it with a light microscope. These are pictures over about a six-second period.

So, this is the publication we had just a short while ago. This is over 580,000 letters of genetic code; it's the largest molecule ever made by humans of a defined structure. It's over 300 million molecular weight. If we printed it out at a 10 font with no spacing, it takes 142 pages just to print this genetic code. Well, how do we boot up a chromosome? How do we activate this? Obviously, with a virus it's pretty simple; it's much more complicated dealing with bacteria. It's also simpler when you go into eukaryotes like ourselves: you can just pop out the nucleus and pop in another one, and that's what you've all heard about with cloning. With bacteria and Archaea, the chromosome is integrated into the cell, but we recently showed that we can do a complete transplant of a chromosome from one cell to another and activate it. We purified a chromosome from one microbial species-roughly, these two are as distant as human and micewe added a few extra genes so we could select for this chromosome, we digested it with enzymes to kill all the proteins, and it was pretty stunning when we put this in the cell-and you'll appreciate our very sophisticated graphics here. The new chromosome went into the cell. In fact, we thought this might be as far as it went, but we tried to design the process a little bit further.

This is a major mechanism of evolution right here. We find all kinds of species that have taken up a second chromosome or a third one from somewhere, adding thousands of new traits in a second to that species. So, people who think of evolution as just one gene changing at a time have missed much of biology.

There are enzymes called restriction enzymes that actually digest DNA. The chromosome that was in the cell doesn't have one; the chromosome we put in does. It got expressed and it recognized the other chromosome as foreign material, chewed it up, and so we ended up just with a cell with the new chromosome. It turned blue because of the genes we put in it. And with a very short period of time, all the characteristics of one species were lost and it converted totally into the new species based on the new software that we put in the cell. All the proteins changed, the membranes changed; when we read the genetic code, it's exactly what we had transferred in.

So, this may sound like genomic alchemy, but we can, by moving the software of DNA around, change things quite dramatically. Now I've argued, this is not genesis; this is building on three and a half billion years of evolution. And I've argued that we're about to perhaps create a new version of the Cambrian explosion, where there's massive new speciation based on this digital design.

Why do this? I think this is pretty obvious in terms of some of the needs. We're about to go from six and a half to nine billion people over the next 40 years. To put it in context for myself: I was born in 1946.There are now three people on the planet for every one of us that existed in 1946; within 40 years, there'll be four. We have trouble feeding, providing fresh, clean water, medicines, fuel for the six and a half billion. It's going to be a stretch to do it for nine. We use over five billion tons of coal, 30 billion-plus barrels of oil-that's a hundred million barrels a day. When we try to think of biological processes or any process to replace that, it's going to be a huge challenge. Then of course, there's all that CO2 from this material that ends up in the atmosphere.

We now, from our discovery around the world, have a database with about 20 million genes, and I like to think of these as the design components of the future. The electronics industry only had a dozen or so components, and look at the diversity that came out of that. We're limited here primarily by a biological reality and our imagination. We now have techniques, because of these rapid methods of synthesis, to do what we're calling combinatorial genomics. We have the ability now to build a large robot that can make a million chromosomes a day. When you think of processing these 20 million different genes or trying to optimize processes to produce octane or to produce pharmaceuticals, new vaccines, we can just with a small team, do more molecular biology than the last 20 years of all science. And it's just standard selection: we can select for viability, chemical or fuel production, vaccine production, etc.

This is a screen snapshot of some true design software that we're working on to actually be able to sit down and design species in the computer. You know, we don't know necessarily what it'll look like: we know exactly what their genetic code looks like. We're focusing on now fourth-generation fuels. You've seen recently, corn to ethanol is just a bad experiment. We have second- and third-generation fuels that will be coming out relatively soon that are sugar, to much higher-value fuels like octane or different types of butanol.

But the only way we think that biology can have a major impact without further increasing the cost of food and limiting its availability is if we start with CO2 as its feedstock, and so we're working with designing cells to go down this road. And we think we'll have the first fourth-generation fuels in about 18 months. Sunlight and CO2 is one method...but in our discovery around the world, we have all kinds of other methods.

This is an organism we described in 1996. It lives in the deep ocean, about a mile and a half deep, almost at boiling-water temperatures. It takes CO2 to methane using molecular hydrogen as its energy source. We're looking to see if we can take captured CO2, which can easily be piped to sites, convert that CO2 back into fuel to drive this process.

So, in a short period of time, we think that we might be able to increase what the basic question is of "What is life?" We truly, you know, have modest goals of replacing the whole petrol-chemical industry

Yeah. If you can't do that at TED, where can you? -become a major source of energy ... But also, we're now working on using these same tools to come up with instant sets of vaccines. You've seen this year with flu; we're always a year behind and a dollar short when it comes to the right vaccine. I think that can be changed by building combinatorial vaccines in advance. Here's what the future may begin to look like with changing, now, the evolutionary tree, speeding up evolution with synthetic bacteria, Archaea and, eventually, eukaryotes. We're a ways away from improving people: our goal is just to make sure that we have a chance to survive long enough to maybe do that.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!