下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Sir Martin Rees:這是我們最後的世紀?」- Is This Our Final Century?

觀看次數:3284  • 

框選或點兩下字幕可以直接查字典喔!

If you take 10,000 people at random, 9,999 have something in common: their interests in business lie on or near the Earth's surface. The odd one out is an astronomer, and I am one of that strange breed. My talk will be in two parts. I'll talk first as an astronomer, and then as a worried member of the human race. But let's start off by remembering that Darwin showed how we're the outcome of four billion years of evolution. And what we try to do in astronomy and cosmology is to go back before Darwin's simple beginning, to set our Earth in a cosmic context.

And let me just run through a few slides. This was the impact that happened last week on a comet. If they'd sent a nuke, it would have been rather more spectacular than what actually happened last Monday. So that's another project for NASA. That's Mars from the European Mars Express. And at New Year, this artist's impression turned into reality when a parachute landed on Titan, Saturn's giant moon. It landed on the surface. This is pictures taken on the way down. That looks like a coastline. It is indeed, but the ocean is liquid methane—the temperature minus 170 degrees centigrade. If we go beyond our solar system—we've learned that the stars aren't twinkly points of light. Each one is like a sun with a retinue of planets orbiting around it. And we can see places where stars are forming, like the Eagle Nebula. We see stars dying. In six billion years, the sun will look like that. And some stars die spectacularly in a supernova explosion, leaving remnants like that.

On a still bigger scale, we see entire galaxies of stars. We see entire ecosystems where gas is being recycled. And to the cosmologist, these galaxies are just the atoms, as it were, of the large-scale universe. This picture shows a patch of sky so small that it would take about 100 patches like it to cover the full moon in the sky. Through a small telescope, this would look quite blank, but you see here hundreds of little, faint smudges. Each is a galaxy, fully like ours or Andromeda, which looks so small and faint because its light has taken 10 billion light-years to get to us. The stars in those galaxies probably don't have planets around them. There's scant chance of life there—that's because there's been no time for the nuclear fusion in stars to make silicon and carbon and iron, the building blocks of planets and of life. We believe that all of this emerged from a Big Bang—a hot, dense state. So how did that amorphous Big Bang turn into our complex cosmos?

I'm going to show you a movie simulation 16 powers of 10 faster than real time, which shows a patch of the universe where the expansions have subtracted out. But you see, as time goes on in gigayears at the bottom, you will see structures evolve as gravity feeds on small, dense irregularities, and structures develop. And we'll end up after 13 billion years with something looking rather like our own universe. And we compare simulated universes like that—I'll show you a better simulation at the end of my talk—with what we actually see in the sky. Well, we can trace things back to the earlier stages of the Big Bang, but we still don't know what banged and why it banged.

That's a challenge for 21st-century science. If my research group had a logo, it would be this picture here: an ouroboros, where you see the micro-world on the left—the world of the quantum—and on the right the large-scale universe of planets, stars and galaxies. We know our universes are united though—links between left and right. The everyday world is determined by atoms, how they stick together to make molecules. Stars are fueled by how the nuclei in those atoms react together. And, as we've learned in the last few years, galaxies are held together by the gravitational pull of so-called dark matter: particles in huge swarms, far smaller even than atomic nuclei. But we'd like to know the synthesis symbolized at the very top. The micro-world of the quantum is understood. On the right-hand side, gravity holds sway—Einstein explained that. But the unfinished business for 21st-century science is to link together cosmos and micro-world with a unified theory—symbolized, as it were, gastronomically at the top of that picture. And until we have that synthesis, we won't be able to understand the very beginning of our universe because when our universe was itself the size of an atom, quantum effects could shake everything.

And so we need a theory that unifies the very large and the very small, which we don't yet have. One idea, incidentally—and I had this hazard sign to say I'm going to speculate from now on—is that our Big Bang was not the only one. One idea is that our three-dimensional universe may be embedded in a high-dimensional space, just as you can imagine on these sheets of paper. You can imagine ants on one of them thinking it's a two-dimensional universe, not being aware of another population of ants on the other. So there could be another universe just a millimeter away from ours, but we're not aware of it because that millimeter is measured in some fourth spatial dimension, and we're imprisoned in our three. And so we believe that there may be a lot more to physical reality than what we've normally called our universe—the aftermath of our Big Bang. And here's another picture. Bottom right depicts our universe, which on the horizon is not beyond that, but even that is just one bubble, as it were, in some vaster reality. Many people suspect that just as we've gone from believing in one solar system to zillions of solar systems, one galaxy to many galaxies, we have to go to many Big Bangs from one Big Bang, perhaps these many Big Bangs displaying an immense variety of properties.

Well, let's go back to this picture. There's one challenge symbolized at the top, but there's another challenge to science symbolized at the bottom. You want to not only synthesize the very large and the very small, but we want to understand the very complex. And the most complex things are ourselves, midway between atoms and stars. We depend on stars to make the atoms we're made of. We depend on chemistry to determine our complex structure. We clearly have to be large, compared to atoms, to have layer upon layer of complex structure. We clearly have to be small, compared to stars and planets—otherwise we'd be crushed by gravity. And in fact, we are midway. It would take as many human bodies to make up the sun as there are atoms in each of us. The geometric mean of the mass of a proton and the mass of the sun is 50 kilograms, within a factor of two of the mass of each person here. Well, most of you anyway. The science of complexity is probably the greatest challenge of all, greater than that of the very small on the left and the very large on the right. And it's this science, which is not only enlightening our understanding of the biological world, but also transforming our world faster than ever. And more than that, it's engendering new kinds of change.

And I now move on to the second part of my talk, and the book "Our Final Century" was mentioned. If I was not a self-effacing Brit, I would mention the book myself, and I would add that it's available in paperback. And in America, it was called "Our Final Hour" because Americans like instant gratification.

But my theme is that in this century, not only has science changed the world faster than ever, but in new and different ways. Targeted drugs, genetic modification, artificial intelligence, perhaps even implants into our brains, may change human beings themselves. And human beings, their physique and character, has not changed for thousands of years. It may change this century. It's new in our history. And the human impact on the global environment—greenhouse warming, mass extinctions and so forth—is unprecedented, too. And so, this makes this coming century a challenge. Bio- and cybertechnologies are environmentally benign in that they offer marvelous prospects while, nonetheless, reducing pressure on energy and resources. But they will have a dark side. In our interconnected world, novel technology could empower just one fanatic, or some weirdo with a mindset of those who now design computer viruses, to trigger some kind on disaster. Indeed, catastrophe could arise simply from technical misadventure—error rather than terror. And even a tiny probability of catastrophe is unacceptable when the downside could be of global consequence.

In fact, some years ago, Bill Joy wrote an article expressing tremendous concern about robots taking us over, etc. I don't go along with all that, but it's interesting that he had a simple solution. It was what he called "fine-grained relinquishment." He wanted to give up the dangerous kind of science and keep the good bits. Now, that's absurdly naive. For two reasons—first, any scientific discovery has benign consequences as well as dangerous ones. And also, when a scientist makes a discovery, he or she normally has no clue what the applications are going to be. And so what this means is that we have to accept the risks if we are going to enjoy the benefits of science. We have to accept that there will be hazards. And I think we have to go back to what happened in the post-War era, post-World War II, when the nuclear scientists who'd been involved in making the atomic bomb, in many cases, were concerned that they should do all they could to alert the world to the dangers.

And they were inspired not by the young Einstein, who did the great work in relativity, but by the old Einstein, the icon of poster and t-shirt, who failed in his scientific efforts to unify the physical laws. He was premature, but he was a moral compass—an inspiration to scientists who were concerned with arms control. And perhaps the greatest living person is someone I'm privileged to know, Joe Rothblatt. Equally untidy office there, as you can see. He's 96 years old, and he founded the Pugwash movement. He persuaded Einstein, as his last act, to sign the famous memorandum of Bertrand Russell. And he sets an example of the concerned scientist. And I think to harness science optimally, to choose which doors to open and which to leave closed, we need latter-day counterparts of people like Joseph Rothblatt.

We need not just campaigning physicists, but we need biologists, computer experts and environmentalists as well. And I think academics and independent entrepreneurs have a special obligation because they have more freedom than those in government service, or company employees subject to commercial pressure. I wrote my book, "Our Final Century," as a scientist, just a general scientist. But there's one respect, I think, in which being a cosmologist offered a special perspective, and that's that it offers an awareness of the immense future. The stupendous time spans of the evolutionary past are now part of common culture—outside the American Bible Belt, anyway—but most people, even those who are familiar with evolution, aren't mindful that even more time lies ahead.

The sun has been shining for four and a half billion years, but it'll be another six billion years before its fuel runs out. On that schematic picture, a sort of time-lapse picture, we're halfway. And it'll be another six billion before that happens, and any remaining life on Earth is vaporized. There's an unthinking tendency to imagine that humans will be there, experiencing the sun's demise, but any life and intelligence that exists then will be as different from us as we are from bacteria. The unfolding of intelligence and complexity still has immensely far to go, here on Earth and probably far beyond. So we are still at the beginning of the emergence of complexity in our Earth and beyond. If you represent the Earth's lifetime by a single year, say, from January when it was made to December, the 21st-century would be a quarter of a second in June—a tiny fraction of the year. But even in this concertinaed cosmic perspective, our century is very, very special—the first when humans can change themselves and their home planet.

As I should have shown this earlier, it will not be humans who witness the end point of the sun; it will be creatures as different from us as we are from bacteria. When Einstein died in 1955, one striking tribute to his global status was this cartoon by Herblock in the Washington Post. The plaque reads, "Albert Einstein lived here." And I'd like to end with a vignette, as it were, inspired by this image. We've been familiar for 40 years with this image: the fragile beauty of land, ocean and clouds, contrasted with the sterile moonscape on which the astronauts left their footprints. But let's suppose some aliens had been watching our pale blue dot in the cosmos from afar, not just for 40 years, but for the entire 4.5 billion-year history of our Earth. What would they have seen? Over nearly all that immense time, Earth's appearance would have changed very gradually. The only abrupt worldwide change would have been major asteroid impacts or volcanic super-eruptions. Apart from those brief traumas, nothing happens suddenly.

The continental landmasses drifted around. Ice cover waxed and waned. Successions of new species emerged, evolved and became extinct. But in just a tiny sliver of the Earth's history, the last one-millionth part, a few thousand years, the patterns of vegetation altered much faster than before. This signaled the start of agriculture. Change has accelerated as human populations rose. Then other things happened even more abruptly. Within just 50 years—that's one hundredth of one millionth of the Earth's age—the amount of carbon dioxide in the atmosphere started to rise, and ominously fast.

The planet became an intense emitter of radio waves—the total output from all TV and cell phones and radar transmissions. And something else happened. Metallic objects—albeit very small ones, a few tons at most—escaped into orbit around the Earth. Some journeyed to the moons and planets. A race of advanced extraterrestrials watching our solar system from afar could confidently predict Earth's final doom in another six billion years. But could they have predicted this unprecedented spike less than halfway through the Earth's life? These human-induced alterations occupying overall less than a millionth of the elapsed lifetime and seemingly occurring with runaway speed? If they continued their vigil, what might these hypothetical aliens witness in the next hundred years? Will some spasm foreclose Earth's future? Or will the biosphere stabilize? Or will some of the metallic objects launched from the Earth spawn new oases, a post-human life elsewhere?

The science done by the young Einstein will continue as long as our civilization, but for civilization to survive, we'll need the wisdom of the old Einstein—humane, global and farseeing. And whatever happens in this uniquely crucial century will resonate into the remote future and perhaps far beyond the Earth, far beyond the Earth as depicted here. Thank you very much.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!