下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Sebastian Seung: 我就是我的聯結體」- I Am My Connectome

觀看次數:2260  • 

框選或點兩下字幕可以直接查字典喔!

We live in a remarkable time, the age of genomics. Your genome is the entire sequence of your DNA. Your sequence and mine are slightly different. That's why we look different. I've got brown eyes; you might have blue or gray. But it's not just skin-deep. The headlines tell us that genes can give us scary diseases, maybe even shape our personality, or give us mental disorders. Our genes seem to have awesome power over our destinies. And yet, I would like to think that I am more than my genes. What do you guys think? Are you more than your genes? Yes? I think some people agree with me. I think we should make a statement. I think we should say it all together. All right? I'm more than my genes—all together.

I am more than my genes.

What am I? I am my connectome. Now, since you guys are really great, maybe you can humor me and say this all together too. Right. All together now.

I am my connectome.

That sounded great. You know, you guys are so great, you don't even know what a connectome is, and you're willing to play along with me. I could just go home now.

Well, so far only one connectome is known, that of this tiny worm. Its modest nervous system consists of just 300 neurons. And in the 1970s and '80s, a team of scientists mapped all 7,000 connections between the neurons. In this diagram, every node is a neuron, and every line is a connection. This is the connectome of the worm C. elegans. Your connectome is far more complex than this because your brain contains 100 billion neurons and 10,000 times as many connections. There's a diagram like this for your brain, but there's no way it would fit on this slide. Your connectome contains one million times more connections than your genome has letters. That's a lot of information.

What's in that information? We don't know for sure, but there are theories. Since the 19th century, neuroscientists have speculated that maybe your memories—the information that makes you you—maybe your memories are stored in the connections between your brain's neurons. And perhaps other aspects of your personal identity—maybe your personality and your intellect—maybe they're also encoded in the connections between your neurons. And so now you can see why I proposed this hypothesis: I am my connectome. I didn't ask you to chant it because it's true; I just want you to remember it. And in fact, we don't know if this hypothesis is correct, because we have never had technologies powerful enough to test it. Finding that worm connectome took over a dozen years of tedious labor. And to find the connectomes of brains more like our own, we need more sophisticated technologies that are automated, that will speed up the process of finding connectomes. And in the next few minutes, I'll tell you about some of these technologies, which are currently under development in my lab and the labs of my collaborators.

Now you've probably seen pictures of neurons before. You can recognize them instantly by their fantastic shapes. They extend long and delicate branches, and in short, they look like trees. But this is just a single neuron. In order to find connectomes, we have to see all the neurons at the same time. So let's meet Bobby Kasthuri, who works in the laboratory of Jeff Lichtman at Harvard University. Bobby is holding fantastically thin slices of a mouse brain. And we're zooming in by a factor of 100,000 times to obtain the resolution, so that we can see the branches of neurons all at the same time. Except, you still may not really recognize them, and that's because we have to work in three dimensions.

If we take many images of many slices of the brain and stack them up, we get a three-dimensional image. And still, you may not see the branches. So we start at the top, and we color in the cross-section of one branch in red, and we do that for the next slice and for the next slice. And we keep on doing that, slice after slice. If we continue through the entire stack, we can reconstruct the three-dimensional shape of a small fragment of a branch of a neuron. And we can do that for another neuron in green. And you can see that the green neuron touches the red neuron at two locations, and these are what are called synapses.

Let's zoom in on one synapse, and keep your eyes on the interior of the green neuron. You should see small circles—these are called vesicles. They contain a molecule know as a neurotransmitter. And so when the green neuron wants to communicate, it wants to send a message to the red neuron, it spits out neurotransmitter. At the synapse, the two neurons are said to be connected like two friends talking on the telephone.

So you see how to find a synapse. How can we find an entire connectome? Well, we take this three-dimensional stack of images and treat it as a gigantic three-dimensional coloring book. We color every neuron in, in a different color, and then we look through all of the images, find the synapses and note the colors of the two neurons involved in each synapse. If we can do that throughout all the images, we could find a connectome.

Now, at this point, you've learned the basics of neurons and synapses. And so I think we're ready to tackle one of the most important questions in neuroscience: How are the brains of men and women different? According to this self-help book, guys' brains are like waffles; they keep their lives compartmentalized in boxes. Girls' brains are like spaghetti; everything in their life is connected to everything else. You guys are laughing, but you know, this book changed my life. But seriously, what's wrong with this? You already know enough to tell me—what's wrong with this statement? It doesn't matter whether you're a guy or girl, everyone's brains are like spaghetti. Or maybe really, really fine capellini with branches. Just as one strand of spaghetti contacts many other strands on your plate, one neuron touches many other neurons through their entangled branches. One neuron can be connected to so many other neurons, because there can be synapses at these points of contact. By now, you might have sort of lost perspective on how large this cube of brain tissue actually is.

And so let's do a series of comparisons to show you. I assure you, this is very tiny. It's just six microns on a side. So, here's how it stacks up against an entire neuron. And you can tell that, really, only the smallest fragments of branches are contained inside this cube. And a neuron, well, that's smaller than brain. And that's just a mouse brain—it's a lot smaller than a human brain. So when I show my friends this, sometimes they've told me, "You know, Sebastian, you should just give up. Neuroscience is hopeless." Because if you look at a brain with your naked eye, you don't really see how complex it is, but when you use a microscope, finally the hidden complexity is revealed.

In the 17th century, the mathematician and philosopher, Blaise Pascal, wrote of his dread of the infinite, his feeling of insignificance at contemplating the vast reaches of outer space. And, as a scientist, I'm not supposed to talk about my feelings—too much information, professor. But may I? I feel curiosity, and I feel wonder, but at times I have also felt despair. Why did I choose to study this organ that is so awesome in its complexity that it might well be infinite? It's absurd. How could we even dare to think that we might ever understand this?

And yet, I persist in this quixotic endeavor. And indeed, these days I harbor new hopes. Someday, a fleet of microscopes will capture every neuron and every synapse in a vast database of images. And someday, artificially intelligent supercomputers will analyze the images without human assistance to summarize them in a connectome. I do not know, but I hope that I will live to see that day, because finding an entire human connectome is one of the greatest technological challenges of all time. It will take the work of generations to succeed. At the present time, my collaborators and I, what we're aiming for is much more modest—just to find partial connectomes of tiny chunks of mouse and human brain. But even that will be enough for the first tests of this hypothesis that I am my connectome. For now, let me try to convince you of the plausibility of this hypothesis, that it's actually worth taking seriously.

As you grow during childhood and age during adulthood, your personal identity changes slowly. Likewise, every connectome changes over time. What kinds of changes happen? Well, neurons, like trees, can grow new branches, and they can lose old ones. Synapses can be created, and they can be eliminated. And synapses can grow larger, and they can grow smaller. Second question: What causes these changes? Well, it's true. To some extent, they are programmed by your genes. But that's not the whole story, because there are signals, electrical signals, that travel along the branches of neurons and chemical signals that jump across from branch to branch. These signals are called neural activity. And there's a lot of evidence that neural activity is encoding our thoughts, feelings and perceptions, our mental experiences. And there's a lot of evidence that neural activity can cause your connections to change. And if you put those two facts together, it means that your experiences can change your connectome. And that's why every connectome is unique, even those of genetically identical twins. The connectome is where nature meets nurture. And it might true that just the mere act of thinking can change your connectome—an idea that you may find empowering.

What's in this picture? A cool and refreshing stream of water, you say. What else is in this picture? Do not forget that groove in the Earth called the stream bed. Without it, the water would not know in which direction to flow. And with the stream, I would like to propose a metaphor for the relationship between neural activity and connectivity. Neural activity is constantly changing. It's like the water of the stream; it never sits still. The connections of the brain's neural network determines the pathways along which neural activity flows. And so the connectome is like bed of the stream; but the metaphor is richer than that, because it's true that the stream bed guides the flow of the water, but over long timescales, the water also reshapes the bed of the stream. And as I told you just now, neural activity can change the connectome. And if you'll allow me to ascend to metaphorical heights, I will remind you that neural activity is the physical basis—or so neuroscientists think—of thoughts, feelings and perceptions. And so we might even speak of the stream of consciousness. Neural activity is its water, and the connectome is its bed.

So let's return from the heights of metaphor and return to science. Suppose our technologies for finding connectomes actually work. How will we go about testing the hypothesis "I am my connectome?" Well, I propose a direct test. Let us attempt to read out memories from connectomes. Consider the memory of long temporal sequences of movements, like a pianist playing a Beethoven sonata. According to a theory that dates back to the 19th century, such memories are stored as chains of synaptic connections inside your brain. Because, if the first neurons in the chain are activated, through their synapses they send messages to the second neurons, which are activated, and so on down the line, like a chain of falling dominoes. And this sequence of neural activation is hypothesized to be the neural basis of those sequence of movements.

So one way of trying to test the theory is to look for such chains inside connectomes. But it won't be easy, because they're not going to look like this. They're going to be scrambled up. And so we'll have to use our computers to try to unscramble the chain. And if we can do that, the sequence of the neurons we recover from that unscrambling will be a prediction of the pattern of neural activity that is replayed in the brain during memory recall. And if that were successful, that would be the first example of reading a memory from a connectome.

What a mess! Have you ever tried to wire up a system as complex as this? I hope not. But if you have, you know it's very easy to make a mistake. The branches of neurons are like the wires of the brain. Can anyone guess: what's the total length of wires in your brain? I'll give you a hint. It's a big number. I estimate, millions of miles, all packed in your skull. And if you appreciate that number, you can easily see there is huge potential for mis-wiring of the brain. And indeed, the popular press loves headlines like, "Anorexic brains are wired differently," or "Autistic brains are wired differently." These are plausible claims, but in truth, we can't see the brain's wiring clearly enough to tell if these are really true. And so the technologies for seeing connectomes will allow us to finally read mis-wiring of the brain, to see mental disorders in connectomes.

Sometimes the best way to test a hypothesis is to consider its most extreme implication. Philosophers know this game very well. If you believe that I am my connectome, I think you must also accept the idea that death is the destruction of your connectome. I mention this because there are prophets today who claim that technology will fundamentally alter the human condition and perhaps even transform the human species. One of their most cherished dreams is to cheat death by that practice known as cryonics. If you pay 100,000 dollars, you can arrange to have your body frozen after death and stored in liquid nitrogen in one of these tanks in an Arizona warehouse, awaiting a future civilization that is advanced to resurrect you.

Should we ridicule the modern seekers of immortality, calling them fools? Or will they someday chuckle over our graves? I don't know—I prefer to test their beliefs, scientifically. I propose that we attempt to find a connectome of a frozen brain. We know that damage to the brain occurs after death and during freezing. The question is: has that damage erased the connectome? If it has, there is no way that any future civilization will be able to recover the memories of these frozen brains. Resurrection might succeed for the body, but not for the mind. On the other hand, if the connectome is still intact, we cannot ridicule the claims of cryonics so easily.

I've described a quest that begins in the world of the very small, and propels us to the world of the far future. Connectomes will mark a turning point in human history. As we evolved from our ape-like ancestors on the African savanna, what distinguished us was our larger brains. We have used our brains to fashion ever more amazing technologies. Eventually, these technologies will become so powerful that we will use them to know ourselves by deconstructing and reconstructing our own brains. I believe that this voyage of self-discovery is not just for scientists, but for all of us. And I'm grateful for the opportunity to share this voyage with you today.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!