下載App 希平方
攻其不背
App 開放下載中
下載App 希平方
攻其不背
App 開放下載中
IE版本不足
您的瀏覽器停止支援了😢使用最新 Edge 瀏覽器或點選連結下載 Google Chrome 瀏覽器 前往下載

免費註冊
! 這組帳號已經註冊過了
Email 帳號
密碼請填入 6 位數以上密碼
已經有帳號了?
忘記密碼
! 這組帳號已經註冊過了
您的 Email
請輸入您註冊時填寫的 Email,
我們將會寄送設定新密碼的連結給您。
寄信了!請到信箱打開密碼連結信
密碼信已寄至
沒有收到信嗎?
如果您尚未收到信,請前往垃圾郵件查看,謝謝!

恭喜您註冊成功!

查看會員功能

註冊未完成

《HOPE English 希平方》服務條款關於個人資料收集與使用之規定

隱私權政策
上次更新日期:2014-12-30

希平方 為一英文學習平台,我們每天固定上傳優質且豐富的影片內容,讓您不但能以有趣的方式學習英文,還能增加內涵,豐富知識。我們非常注重您的隱私,以下說明為當您使用我們平台時,我們如何收集、使用、揭露、轉移及儲存你的資料。請您花一些時間熟讀我們的隱私權做法,我們歡迎您的任何疑問或意見,提供我們將產品、服務、內容、廣告做得更好。

本政策涵蓋的內容包括:希平方學英文 如何處理蒐集或收到的個人資料。
本隱私權保護政策只適用於: 希平方學英文 平台,不適用於非 希平方學英文 平台所有或控制的公司,也不適用於非 希平方學英文 僱用或管理之人。

個人資料的收集與使用
當您註冊 希平方學英文 平台時,我們會詢問您姓名、電子郵件、出生日期、職位、行業及個人興趣等資料。在您註冊完 希平方學英文 帳號並登入我們的服務後,我們就能辨認您的身分,讓您使用更完整的服務,或參加相關宣傳、優惠及贈獎活動。希平方學英文 也可能從商業夥伴或其他公司處取得您的個人資料,並將這些資料與 希平方學英文 所擁有的您的個人資料相結合。

我們所收集的個人資料, 將用於通知您有關 希平方學英文 最新產品公告、軟體更新,以及即將發生的事件,也可用以協助改進我們的服務。

我們也可能使用個人資料為內部用途。例如:稽核、資料分析、研究等,以改進 希平方公司 產品、服務及客戶溝通。

瀏覽資料的收集與使用
希平方學英文 自動接收並記錄您電腦和瀏覽器上的資料,包括 IP 位址、希平方學英文 cookie 中的資料、軟體和硬體屬性以及您瀏覽的網頁紀錄。

隱私權政策修訂
我們會不定時修正與變更《隱私權政策》,不會在未經您明確同意的情況下,縮減本《隱私權政策》賦予您的權利。隱私權政策變更時一律會在本頁發佈;如果屬於重大變更,我們會提供更明顯的通知 (包括某些服務會以電子郵件通知隱私權政策的變更)。我們還會將本《隱私權政策》的舊版加以封存,方便您回顧。

服務條款
歡迎您加入看 ”希平方學英文”
上次更新日期:2013-09-09

歡迎您加入看 ”希平方學英文”
感謝您使用我們的產品和服務(以下簡稱「本服務」),本服務是由 希平方學英文 所提供。
本服務條款訂立的目的,是為了保護會員以及所有使用者(以下稱會員)的權益,並構成會員與本服務提供者之間的契約,在使用者完成註冊手續前,應詳細閱讀本服務條款之全部條文,一旦您按下「註冊」按鈕,即表示您已知悉、並完全同意本服務條款的所有約定。如您是法律上之無行為能力人或限制行為能力人(如未滿二十歲之未成年人),則您在加入會員前,請將本服務條款交由您的法定代理人(如父母、輔助人或監護人)閱讀,並得到其同意,您才可註冊及使用 希平方學英文 所提供之會員服務。當您開始使用 希平方學英文 所提供之會員服務時,則表示您的法定代理人(如父母、輔助人或監護人)已經閱讀、了解並同意本服務條款。 我們可能會修改本條款或適用於本服務之任何額外條款,以(例如)反映法律之變更或本服務之變動。您應定期查閱本條款內容。這些條款如有修訂,我們會在本網頁發佈通知。變更不會回溯適用,並將於公布變更起十四天或更長時間後方始生效。不過,針對本服務新功能的變更,或基於法律理由而為之變更,將立即生效。如果您不同意本服務之修訂條款,則請停止使用該本服務。

第三人網站的連結 本服務或協力廠商可能會提供連結至其他網站或網路資源的連結。您可能會因此連結至其他業者經營的網站,但不表示希平方學英文與該等業者有任何關係。其他業者經營的網站均由各該業者自行負責,不屬希平方學英文控制及負責範圍之內。

兒童及青少年之保護 兒童及青少年上網已經成為無可避免之趨勢,使用網際網路獲取知識更可以培養子女的成熟度與競爭能力。然而網路上的確存有不適宜兒童及青少年接受的訊息,例如色情與暴力的訊息,兒童及青少年有可能因此受到心靈與肉體上的傷害。因此,為確保兒童及青少年使用網路的安全,並避免隱私權受到侵犯,家長(或監護人)應先檢閱各該網站是否有保護個人資料的「隱私權政策」,再決定是否同意提出相關的個人資料;並應持續叮嚀兒童及青少年不可洩漏自己或家人的任何資料(包括姓名、地址、電話、電子郵件信箱、照片、信用卡號等)給任何人。

為了維護 希平方學英文 網站安全,我們需要您的協助:

您承諾絕不為任何非法目的或以任何非法方式使用本服務,並承諾遵守中華民國相關法規及一切使用網際網路之國際慣例。您若係中華民國以外之使用者,並同意遵守所屬國家或地域之法令。您同意並保證不得利用本服務從事侵害他人權益或違法之行為,包括但不限於:
A. 侵害他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利;
B. 違反依法律或契約所應負之保密義務;
C. 冒用他人名義使用本服務;
D. 上載、張貼、傳輸或散佈任何含有電腦病毒或任何對電腦軟、硬體產生中斷、破壞或限制功能之程式碼之資料;
E. 干擾或中斷本服務或伺服器或連結本服務之網路,或不遵守連結至本服務之相關需求、程序、政策或規則等,包括但不限於:使用任何設備、軟體或刻意規避看 希平方學英文 - 看 YouTube 學英文 之排除自動搜尋之標頭 (robot exclusion headers);

服務中斷或暫停
本公司將以合理之方式及技術,維護會員服務之正常運作,但有時仍會有無法預期的因素導致服務中斷或故障等現象,可能將造成您使用上的不便、資料喪失、錯誤、遭人篡改或其他經濟上損失等情形。建議您於使用本服務時宜自行採取防護措施。 希平方學英文 對於您因使用(或無法使用)本服務而造成的損害,除故意或重大過失外,不負任何賠償責任。

版權宣告
上次更新日期:2013-09-16

希平方學英文 內所有資料之著作權、所有權與智慧財產權,包括翻譯內容、程式與軟體均為 希平方學英文 所有,須經希平方學英文同意合法才得以使用。
希平方學英文歡迎你分享網站連結、單字、片語、佳句,使用時須標明出處,並遵守下列原則:

  • 禁止用於獲取個人或團體利益,或從事未經 希平方學英文 事前授權的商業行為
  • 禁止用於政黨或政治宣傳,或暗示有支持某位候選人
  • 禁止用於非希平方學英文認可的產品或政策建議
  • 禁止公佈或傳送任何誹謗、侮辱、具威脅性、攻擊性、不雅、猥褻、不實、色情、暴力、違反公共秩序或善良風俗或其他不法之文字、圖片或任何形式的檔案
  • 禁止侵害或毀損希平方學英文或他人名譽、隱私權、營業秘密、商標權、著作權、專利權、其他智慧財產權及其他權利、違反法律或契約所應付支保密義務
  • 嚴禁謊稱希平方學英文辦公室、職員、代理人或發言人的言論背書,或作為募款的用途

網站連結
歡迎您分享 希平方學英文 網站連結,與您的朋友一起學習英文。

抱歉傳送失敗!

不明原因問題造成傳送失敗,請儘速與我們聯繫!
希平方 x ICRT

「Fei-Fei Li:我們如何教電腦認識圖片」- How We're Teaching Computers to Understand Pictures

觀看次數:3959  • 

框選或點兩下字幕可以直接查字典喔!

Let me show you something.

Okay, that's a cat sitting in a bed. The boy is petting the elephant. Those are people that are going on an airplane. That's a big airplane.

This is a three-year-old child describing what she sees in a series of photos. She might still have a lot to learn about this world, but she's already an expert at one very important task: to make sense of what she sees. Our society is more technologically advanced than ever. We send people to the moon, we make phones that talk to us or customize radio stations that can play only music we like. Yet, our most advanced machines and computers still struggle at this task. So I'm here today to give you a progress report on the latest advances in our research in computer vision, one of the most frontier and potentially revolutionary technologies in computer science.

Yes, we have prototyped cars that can drive by themselves, but without smart vision, they cannot really tell the difference between a crumpled paper bag on the road, which can be run over, and a rock that size, which should be avoided. We have made fabulous megapixel cameras, but we have not delivered sight to the blind. Drones can fly over massive land, but don't have enough vision technology to help us to track the changes of the rainforests. Security cameras are everywhere, but they do not alert us when a child is drowning in a swimming pool. Photos and videos are becoming an integral part of global life. They're being generated at a pace that's far beyond what any human, or teams of humans, could hope to view, and you and I are contributing to that at this TED. Yet our most advanced software is still struggling at understanding and managing this enormous content. So in other words, collectively as a society, we're very much blind, because our smartest machines are still blind.

"Why is this so hard?" you may ask. Cameras can take pictures like this one by converting lights into a two-dimensional array of numbers known as pixels, but these are just lifeless numbers. They do not carry meaning in themselves. Just like to hear is not the same as to listen, to take pictures is not the same as to see, and by seeing, we really mean understanding. In fact, it took Mother Nature 540 million years of hard work to do this task, and much of that effort went into developing the visual processing apparatus of our brains, not the eyes themselves. So vision begins with the eyes, but it truly takes place in the brain.

So for 15 years now, starting from my Ph.D. at Caltech and then leading Stanford's Vision Lab, I've been working with my mentors, collaborators and students to teach computers to see. Our research field is called computer vision and machine learning. It's part of the general field of artificial intelligence. So ultimately, we want to teach the machines to see just like we do: naming objects, identifying people, inferring 3D geometry of things, understanding relations, emotions, actions and intentions. You and I weave together entire stories of people, places and things the moment we lay our gaze on them.

The first step towards this goal is to teach a computer to see objects, the building block of the visual world. In its simplest terms, imagine this teaching process as showing the computers some training images of a particular object, let's say cats, and designing a model that learns from these training images. How hard can this be? After all, a cat is just a collection of shapes and colors, and this is what we did in the early days of object modeling. We'd tell the computer algorithm in a mathematical language that a cat has a round face, a chubby body, two pointy ears, and a long tail, and that looked all fine. But what about this cat? It's all curled up. Now you have to add another shape and viewpoint to the object model. But what if cats are hidden? What about these silly cats? Now you get my point. Even something as simple as a household pet can present an infinite number of variations to the object model, and that's just one object.

So about eight years ago, a very simple and profound observation changed my thinking. No one tells a child how to see, especially in the early years. They learn this through real-world experiences and examples. If you consider a child's eyes as a pair of biological cameras, they take one picture about every 200 milliseconds, the average time an eye movement is made. So by age three, a child would have seen hundreds of millions of pictures of the real world. That's a lot of training examples. So instead of focusing solely on better and better algorithms, my insight was to give the algorithms the kind of training data that a child was given through experiences in both quantity and quality.

Once we know this, we knew we needed to collect a data set that has far more images than we have ever had before, perhaps thousands of times more, and together with Professor Kai Li at Princeton University, we launched the ImageNet project in 2007. Luckily, we didn't have to mount a camera on our head and wait for many years. We went to the Internet, the biggest treasure trove of pictures that humans have ever created. We downloaded nearly a billion images and used crowd sourcing technology like the Amazon Mechanical Turk platform to help us to label these images. At its peak, ImageNet was one of the biggest employers of the Amazon Mechanical Turk workers: together, almost 50,000 workers from 167 countries around the world helped us to clean, sort and label nearly a billion candidate images. That was how much effort it took to capture even a fraction of the imagery a child's mind takes in in the early developmental years.

In hindsight, this idea of using big data to train computer algorithms may seem obvious now, but back in 2007, it was not so obvious. We were fairly alone on this journey for quite a while. Some very friendly colleagues advised me to do something more useful for my tenure, and we were constantly struggling for research funding. Once, I even joked to my graduate students that I would just reopen my dry cleaner's shop to fund ImageNet. After all, that's how I funded my college years.

So we carried on. In 2009, the ImageNet project delivered a database of 15 million images across 22,000 classes of objects and things organized by everyday English words. In both quantity and quality, this was an unprecedented scale. As an example, in the case of cats, we have more than 62,000 cats of all kinds of looks and poses and across all species of domestic and wild cats. We were thrilled to have put together ImageNet, and we wanted the whole research world to benefit from it, so in the TED fashion, we opened up the entire data set to the worldwide research community for free.

Now that we have the data to nourish our computer brain, we're ready to come back to the algorithms themselves. As it turned out, the wealth of information provided by ImageNet was a perfect match to a particular class of machine learning algorithms called convolutional neural network, pioneered by Kunihiko Fukushima, Geoff Hinton, and Yann LeCun back in the 1970s and '80s. Just like the brain consists of billions of highly connected neurons, a basic operating unit in a neural network is a neuron-like node. It takes input from other nodes and sends output to others. Moreover, these hundreds of thousands or even millions of nodes are organized in hierarchical layers, also similar to the brain. In a typical neural network we use to train our object recognition model, it has 24 million nodes, 140 million parameters, and 15 billion connections. That's an enormous model. Powered by the massive data from ImageNet and the modern CPUs and GPUs to train such a humongous model, the convolutional neural network blossomed in a way that no one expected. It became the winning architecture to generate exciting new results in object recognition. This is a computer telling us this picture contains a cat and where the cat is. Of course there are more things than cats, so here's a computer algorithm telling us the picture contains a boy and a teddy bear; a dog, a person, and a small kite in the background; or a picture of very busy things like a man, a skateboard, railings, a lampost, and so on. Sometimes, when the computer is not so confident about what it sees, we have taught it to be smart enough to give us a safe answer instead of committing too much, just like we would do, but other times our computer algorithm is remarkable at telling us what exactly the objects are, like the make, model, year of the cars.

We applied this algorithm to millions of Google Street View images across hundreds of American cities, and we have learned something really interesting: first, it confirmed our common wisdom that car prices correlate very well with household incomes. But surprisingly, car prices also correlate well with crime rates in cities, or voting patterns by zip codes.

So wait a minute. Is that it? Has the computer already matched or even surpassed human capabilities? Not so fast. So far, we have just taught the computer to see objects. This is like a small child learning to utter a few nouns. It's an incredible accomplishment, but it's only the first step. Soon, another developmental milestone will be hit, and children begin to communicate in sentences. So instead of saying this is a cat in the picture, you already heard the little girl telling us this is a cat lying on a bed.

So to teach a computer to see a picture and generate sentences, the marriage between big data and machine learning algorithm has to take another step. Now, the computer has to learn from both pictures as well as natural language sentences generated by humans. Just like the brain integrates vision and language, we developed a model that connects parts of visual things like visual snippets with words and phrases in sentences.

About four months ago, we finally tied all this together and produced one of the first computer vision models that is capable of generating a human-like sentence when it sees a picture for the first time. Now, I'm ready to show you what the computer says when it sees the picture that the little girl saw at the beginning of this talk.

A man is standing next to an elephant. A large airplane sitting on top of an airport runway.

Of course, we're still working hard to improve our algorithms, and it still has a lot to learn.

And the computer still makes mistakes.

A cat lying on a bed in a blanket.

So of course, when it sees too many cats, it thinks everything might look like a cat.

A young boy is holding a baseball bat.

Or, if it hasn't seen a toothbrush, it confuses it with a baseball bat.

A man riding a horse down a street next to a building.

We haven't taught Art 101 to the computers.

A zebra standing in a field of grass.

And it hasn't learned to appreciate the stunning beauty of nature like you and I do.

So it has been a long journey. To get from age zero to three was hard. The real challenge is to go from three to 13 and far beyond. Let me remind you with this picture of the boy and the cake again. So far, we have taught the computer to see objects or even tell us a simple story when seeing a picture.

A person sitting at a table with a cake.

But there's so much more to this picture than just a person and a cake. What the computer doesn't see is that this is a special Italian cake that's only served during Easter time. The boy is wearing his favorite t-shirt given to him as a gift by his father after a trip to Sydney, and you and I can all tell how happy he is and what's exactly on his mind at that moment.

This is my son Leo. On my quest for visual intelligence, I think of Leo constantly and the future world he will live in. When machines can see, doctors and nurses will have extra pairs of tireless eyes to help them to diagnose and take care of patients. Cars will run smarter and safer on the road. Robots, not just humans, will help us to brave the disaster zones to save the trapped and wounded. We will discover new species, better materials, and explore unseen frontiers with the help of the machines.

Little by little, we're giving sight to the machines. First, we teach them to see. Then, they help us to see better. For the first time, human eyes won't be the only ones pondering and exploring our world. We will not only use the machines for their intelligence, we will also collaborate with them in ways that we cannot even imagine.

This is my quest: to give computers visual intelligence and to create a better future for Leo and for the world.

Thank you.

播放本句

登入使用學習功能

使用Email登入

HOPE English 播放器使用小提示

  • 功能簡介

    單句重覆、重複上一句、重複下一句:以句子為單位重覆播放,單句重覆鍵顯示綠色時為重覆播放狀態;顯示白色時為正常播放狀態。按重複上一句、重複下一句時就會自動重覆播放該句。
    收錄佳句:點擊可增減想收藏的句子。

    中、英文字幕開關:中、英文字幕按鍵為綠色為開啟,灰色為關閉。鼓勵大家搞懂每一句的內容以後,關上字幕聽聽看,會發現自己好像在聽中文說故事一樣,會很有成就感喔!
    收錄單字:框選英文單字可以收藏不會的單字。
  • 分享
    如果您有收錄很優秀的句子時,可以分享佳句給大家,一同看佳句學英文!